题目列表(包括答案和解析)
6.Y=4x-3,依题意有
即,∴ 2
由函数y=2x的单调性可得x。
5.令y=()U,U=x2+2x+5,则y是关于U的减函数,而U是(-,-1)上的减函数,[-1,+]上的增函数,∴ y=()在(-,-1)上是增函数,而在[-1,+]上是减函数,又∵U=x2+2x+5=(x+1)2+44, ∴y=()的值域为(0,()4)]。
4.要使f(x)为奇函数,∵ xR,∴需f(x)+f(-x)=0, ∴f(x)=a-=a-,由a-=0,得2a-=0,得2a-。
3.f(x)=, ∵x[-3,2], ∴.则当2-x=,即x=1时,f(x)有最小值;当2-x=8,即x=-3时,f(x)有最大值57。
2.g[g(x)]=4=4=2,f[g(x)]=4=2,∵g[g(x)]>g[f(x)]>f[g(x)], ∴2>2>2,∴22x+1>2x+1>22x, ∴2x+1>x+1>2x,解得0<x<1
1.∵0<a<2,∴ y=ax在(-,+)上为减函数,∵ a>a, ∴2x2-3x+1<x2+2x-5,解得2<x<3,
11.∵ g(x)是一次函数,∴可设g(x)=kx+b(k0), ∵F(x)=f[g(x)]=2kx+b。由已知有F(2)=,F()=2,∴ ,∴ k=-,b=,∴f(x)=2-
10.2
9.或3。
Y=m2x+2mx-1=(mx+1)2-2, ∵它在区间[-1,1]上的最大值是14,∴(m-1+1)2-2=14或(m+1)2-2=14,解得m=或3。
8.0 f(125)=f(53)=f(52×2-1)=2-2=0。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com