题目列表(包括答案和解析)

 0  92788  92796  92802  92806  92812  92814  92818  92824  92826  92832  92838  92842  92844  92848  92854  92856  92862  92866  92868  92872  92874  92878  92880  92882  92883  92884  92886  92887  92888  92890  92892  92896  92898  92902  92904  92908  92914  92916  92922  92926  92928  92932  92938  92944  92946  92952  92956  92958  92964  92968  92974  92982  447348 

重点:指数函数与对数函数内在联系

难点:反函数概念的理解

试题详情

3. 情感、态度、价值观

(1)体会指数函数与指数;

(2)进一步领悟数形结合的思想.

试题详情

2.过程与方法

学生通过观察和类比函数图象,体会两种函数的单调性差异.

试题详情

1.知识与技能

(1)知识与技能

(2)了解反函数的概念,加深对函数思想的理解.

试题详情

4.已知0<<1,  b1,  ab1.  比较

归纳小结:

②   对数函数的概念必要性与重要性;

②对数函数的性质,列表展现.

对数函数(第三课时)

试题详情

3.已知<0,按大小顺序排列m, n, 0, 1

试题详情

2.求函数的值域.

试题详情

1.已知函数的定义域为[-1,1],则函数的定义域为  

试题详情

1. 比较下列各组数中的两个值大小

(1)  

(2)

(3)  (>0,且≠1)

分析:由数形结合的方法或利用函数的单调性来完成:

(1)解法1:用图形计算器或多媒体画出对数函数的图象.在图象上,横坐标为3、4的点在横坐标为8.5的点的下方:

所以,

解法2:由函数+上是单调增函数,且3.4<8.5,所以.

解法3:直接用计算器计算得:

(2)第(2)小题类似

(3)注:底数是常数,但要分类讨论的范围,再由函数单调性判断大小.

解法1:当>1时,在(0,+∞)上是增函数,且5.1<5.9.

所以,

1时,在(0,+∞)上是减函数,且5.1<5.9.

所以,

解法2:转化为指数函数,再由指数函数的单调判断大小不一,

 令

>1时,在R上是增函数,且5.1<5.9

所以,,即

当0<<1时,在R上是减函数,且5.1>5.9

所以,,即

说明:先画图象,由数形结合方法解答

课堂练习:P85 练习 第2,3题

补充练习

试题详情

2.探索新知

   一般地,我们把函数(>0且≠1)叫做对数函数,其中是自变量,函数的定义域是(0,+∞).

提问:(1).在函数的定义中,为什么要限定>0且≠1.

(2).为什么对数函数(>0且≠1)的定义域是(0,+∞).组织学生充分讨论、交流,使学生更加理解对数函数的含义,从而加深对对数函数的理解.

答:①根据对数与指数式的关系,知可化为,由指数的概念,要使有意义,必须规定>0且≠1.

②因为可化为,不管取什么值,由指数函数的性质,>0,所以

例题1:求下列函数的定义域

(1)     (2)    (>0且≠1)

分析:由对数函数的定义知:>0;>0,解出不等式就可求出定义域.

解:(1)因为>0,即≠0,所以函数的定义域为.

(2)因为>0,即<4,所以函数的定义域为.

下面我们来研究函数的图象,并通过图象来研究函数的性质:

先完成P81表2-3,并根据此表用描点法或用电脑画出函数 再利用电脑软件画出 



1
2
4
6
8
12
16

-1
0
1
2
2.58
3
3.58
4

y

 

 

   0       x

         

   注意到:,若点的图象上,则点的图象上. 由于()与()关于轴对称,因此,的图象与的图象关于轴对称 . 所以,由此我们可以画出的图象 .

  先由学生自己画出的图象,再由电脑软件画出的图象.

探究:选取底数>0,且≠1)的若干不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现它们有哪些特征吗?

  .作法:用多媒体再画出

0
 
     

提问:通过函数的图象,你能说出底数与函数图象的关系吗?函数的图象有何特征,性质又如何?

先由学生讨论、交流,教师引导总结出函数的性质. (投影)

图象的特征
函数的性质
(1)图象都在轴的右边
(1)定义域是(0,+∞)
(2)函数图象都经过(1,0)点
(2)1的对数是0
(3)从左往右看,当>1时,图象逐渐上升,当0<<1时,图象逐渐下降 .
(3)当>1时,是增函数,当
0<<1时,是减函数.
(4)当>1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0. 当0<<1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0 .
(4)当>1时
   >1,则>0
   0<<1,<0
当0<<1时
   >1,则<0
    0<<1,<0
 

由上述表格可知,对数函数的性质如下(先由学生仿造指数函数性质完成,教师适当启发、引导):

 
>1
0<<1


 
 
 
 
 
 


(1)定义域(0,+∞);
(2)值域R;
(3)过点(1,0),即当=1,=0;
(4)在(0,+∞)上是增函数
在(0,+∞)是上减函数

例题训练:

试题详情


同步练习册答案