题目列表(包括答案和解析)
20.(本小题满分12分)
解:(Ⅰ)设圆的方程为: ........1分
根据题意得: ........3分
解得;或
因为,所以
故所求圆的方程为: ........6分
(Ⅱ)设直线与圆交于、两点
联立 解得或
所以........8分
因为三角形面积
要使三角形面积最大,只要求出其最大距离即可.
根据平面几何的性质可知,距离为最大时,点为弦的垂直平分线与圆的交点
此时最大距离等于圆心到直线的距离加上圆的半径......10分
则
,所以
所以三角形面积的最大值为.......12分
19.(本小题满分12分)
解:设两种不同的货物分别装载吨,则
满足的关系式为 ①
所以①所示的线性区域如右图........5分
由已知目标函数为即.......7分
当直线在线性区域内在轴的截距最大时,最大......9分
解得
如图可知在最大
当装载、货物分别为吨、吨时,载货收入最大,最大值为元...12分
18. (本小题满分12分)
解:(Ⅰ)向量与向量垂直
.....2分
.....5分
(Ⅱ).......7分
.......9分
,
.......12分
17.(本小题满分12分)
解:(Ⅰ)
则.....2分
所以.....5分
(Ⅱ)因为,且、均为锐角
又由(Ⅰ)知:为钝角,所以为最小边,为最大边.....6分
由(Ⅰ)可求得:
由正弦定理得:
所以最大边.....8分
因为,
所以.....10分
所以的面积为.....12分
13.; 14.; 15.; 16.
D B A D B D A D CC C B
22.(本题满分14分)
在数列中,首项,前项和,.
(Ⅰ)求证:数列为等差数列;
(Ⅱ)若对一切且恒成立,求实数的取值范围.
2009年教学质量检测
高一数学答案及评分标准
21.(本题满分12分)
解关于的不等式:.
20.(本题满分12分)
已知直径为的圆过点,且圆心在射线:上.
(Ⅰ)求圆的方程;
(Ⅱ)设是圆上的动点,直线与圆交于不同的两点、,求三角形
面积的最大值.
19.(本题满分12分)
一辆货车的最大载重量为吨,要装载、两种不同的货物,已知装载货物每吨收入元,装载货物每吨收入元,且要求装载的货物不少于货物的一半.请问、两种不同的货物分别装载多少吨时,载货得到的收入最大?并求出这个最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com