题目列表(包括答案和解析)

 0  95786  95794  95800  95804  95810  95812  95816  95822  95824  95830  95836  95840  95842  95846  95852  95854  95860  95864  95866  95870  95872  95876  95878  95880  95881  95882  95884  95885  95886  95888  95890  95894  95896  95900  95902  95906  95912  95914  95920  95924  95926  95930  95936  95942  95944  95950  95954  95956  95962  95966  95972  95980  447348 

1. 所有与角终边相同的角, 连同角在内, 可构成的一个集合S是 

  A. {|=+k·1800,k∈Z}      B. {|=+k·3600, k∈Z}[来

C. {|=+k·1800,k∈R}      D. {|=+k·3600, k∈R}

试题详情

3.三角恒等式的证明

证明三角恒等式的过程,实际上是化异为同的过程,即化去形式上的异,而呈现实质上的同,这个过程,往往是从化简开始的--这就是说,在证明三角恒等式时,我们可以从最复杂处开始.

例5  求证 cosα(2secα+tgα)(secα-2tgα)=2cosα-3tgα.

分析  从复杂的左边开始证得右边.

=2cosα-3tgα=右边

例6  证明恒等式

(1)1+3sin2αsec4α+tg6α=sec6α

(2)(sinA+ secA)3+(cosA+cscA)2=(1+secAcscA)2

分析  (1)的左、右两边均较复杂,所以可以从左、右两边同时化简

证明  (1)右边-左边=sec6α-tg6α-3sin2αsec4α-1

=(sec2α-tg2α)(sec4α+sec2α·tg2α+tg2α)-3sin2αsec4α-1

=(sec4α-2sec2αtg2α+tg2α)-1

=(sec2α-tg2α)2-1=0

∴等式成立.

=sin2A+cos2A=1故原式成立

在解题时,要全面地理解“繁”与“简”的关系.实际上,将不同的角化为同角,以减少角的数目,将不同的函数名称,化为同名函数,以减少函数的种类,都是化繁为简,以上两点在三角变换中有着广泛的应用.

分析1  从右端向左端变形,将“切”化为“弦”,以减少函数的种类.

分析2  由1+2sinxcosx立即想到(sinx+cosx)2,进而可以约分,达到化简的目的.

说明  (1)当题目中涉及多种名称的函数时,常常将切、割化为弦(如解法1),或将弦化为切(如解法2)以减少函数的种类.

(2)要熟悉公式的各种变形,以便迅速地找到解题的突破口,请看下列.

=secα+tgα

∴等式成立

说明  以上证明中采用了“1的代换”的技巧,即将1用sec2α-tg2α代换,可是解题者怎么会想到这种代换的呢?很可能,解题者在采用这种代换时,已经预见到代换后,分子可以因式分解,可以约分,而所有这一切都是建立在熟悉公式的各种变形的基础上的,当然,对不熟练的解题者而言,还有如下的“一般证法”--即证明“左边-右边=0”

∴左边=右边

试题详情

2.三角函数式的化简

三角函数式的化简的结果应满足下述要求:

(1)函数种类尽可能地少.

(2)次数尽可能地低.

(3)项数尽可能地少.

(4)尽可能地不含分母.

(5)尽可能地将根号中的因式移到根号外面来.

化简的总思路是:尽可能地化为同类函数再化简.

例3  化简sin2α·tgα+cos2α·ctgα+2sinαcosα

=secα·cscα

解2  原式=(sin2α·tgα+sinα·cosα)+(cos2α·ctgα+sinαcosα)

=tgα·(sin2α+cos2α)+ctgα(sin2α+cos2α)

=tgα+ctgα

=secα·cscα

说明  (1)在解1中,将正切、余切化为正弦、余弦再化简,仍然是循着减少函数种类的思路进行的.

(2)解2中的逆用公式将sinα·cosα用tgα表示,较为灵活,解1与解2相比,思路更自然,因而更实用.

例4  化简:

分析  将被开方式配成完全平方式,脱去根号,进行化简.

试题详情

1.已知某角的一个三角函数值,求该角的其他三角函数值.

解  ∵sinα<0

∴角α在第三或第四象限(不可能在y轴的负半轴上)

(2)若α在第四象限,则

说明  在解决此类问题时,要注意:

(1)尽可能地确定α所在的象限,以便确定三角函数值的符号.

(2)尽可能地避免使用平方关系(在一般情况下只要使用一次).

(3)必要时进行讨论.

例2  已知sinα=m(|m|≤1),求tgα的值.

(2)当m=±1时,α的终边在y轴上,tgα无意义.

(3)当α在Ⅰ、Ⅳ象限时,∵cosα>0.

当α在第Ⅱ、Ⅲ象限时,∵cosα<0,

说明  (1)在对角的范围进行讨论时,不可遗漏终边在坐标轴上的情况.

(2)本题在进行讨论时,为什么以cosα的符号作为分类的标准,而不按sinα的符号(即m的符号)来分类讨论呢?你能找到这里的原因并概括出所用的技巧吗?

试题详情

B、C、D,应选A.

[说明]  此例题用多种方法求解选项,指出3种选择题的技巧.

∴应选D

x轴交点中在原点右边最接近原点的交点,而在原点左边与x轴交点中最

的图象.

∴选D

[说明]  y=Asin(ωx+j)(A>0,ω>0)x∈R的图象可由y=sinx的图象经下列各种顺序变换得到的.

(1)先平移,后伸缩:

①把y=sinx的图象向左(j>0)或向右(j<0)沿x轴方向平移|j|个单位;(相位变换)

(周期变换)

③把所有各点纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍,横坐标不变(振幅变换)

(2)先伸缩,后平移

①把y=sinx图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原

(相位变换)

③把所有各点纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍横坐标不变(振幅变换)

再把横坐标缩小到原来的一半,纵坐标扩大到原来的4倍,则所得的图象的解析式是   [   ]

∴选A.

[例17]  方程sin2x=sinx在区间(0,2π)内解的个数是

                                                  [   ]

A.1      B.2       C.3        D.4

[分析]  本题有两类解法

(1)求出方程在(0,2π)内的所有解,再数其解的个数.而决定选项,对于选择题,此法一般不用.

(2)在同一坐标系中作出函数y=sin2x和y=sinx的图象,如图2-18所示.

它们在(0,2π)内交点个数,即为所求方程解的个数,从而应选C.

它体现了数、形的结合.

[例18]  设函数f(x)是定义在R上的周期为3的奇函数,且f(1)=2,则f(5)=____

解:∵f(x)是奇函数,且f(1)=2,∴f(-1)=-2

又∵f(x)是周期为3的函数.  ∴f(3+x)=f(x)

∴f(-1+3)=f(-1)=-2  即f(2)=-2

f(2+3)=f(2)=-2  即f(5)=-2

[例19]  有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积.

[分析]  本题入手要解决好两个问题.

(1)内接矩形的放置有两种情况,如图2-19所示,应该分别予以处理.

(2)求最大值问题这里应构造函数,怎么选择便于以此表达矩形面积的自变量.

解:如图2-19(1)设∠FOA=θ,则FG=Rsinθ

又设矩形EFGH的面积为S,那么

又∵0°<θ<60°,故当cos(2θ-60°)=1,即θ=30′时,

如图2-19 (2),设∠FOA=θ,则EF=2Rsin(30°-θ),在△OFG中,∠OGF=150°

设矩形的面积为S.

那么S=EFFG=4R2sinθsin(30°-θ)

=2R2[cos(2θ-30°)-cos30°]

又∵0<θ<30°,故当cos(2θ-30°)=1

试题详情

作出三角函数线,如图2-17

MP=sinθ,OM=cosθ,BS=ctgθ

通过观察和度量得MP<OM<BS

从而有sinθ<cosθ<ctgθ

∴应选A

∴cosθ>sinθ

从而可剔除B、D.

再由sinθ<ctgθ,故可剔除C

故选A

试题详情

故选A.

试题详情

19. (本小题满分6分)如图,在矩形ABCD中,ECD的中点,ACF,过FFG//ABAEG,求证: .

19题图
 
20.(本题8分)已知直角梯形纸片OABC在平面直角坐标

系中的位置如图所示,四个顶点的坐标分别为O(0,0),

A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;

(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;

(2)当纸片重叠部分的图形是四边形时,求t的取值范围;

(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由。

 

试题详情

18.(本小题满分8分)已知函数y=-x2-2x+5,当自变量x在下列取值范围内时,分别求函数的最大值和最小值,并求当函数取最大(小)值时所对应的自变量x的值:

(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.

试题详情

17.(本小题满分6分)解方程组

试题详情


同步练习册答案