题目列表(包括答案和解析)
分析、启发、讲练结合.
3.疑点:推导l1、l2的角公式时的构图的分类依据.
1.重点:前面研究了两条直线平行与垂直,本课时是对两直线相交的情况作定量的研究.两直线所成的角公式可由一条直线到另一条直线的角公式直接得到,教学时要讲请l1、l2的公式的推导方法及这一公式的应用.
2,难点:公式的记忆与应用.
(三)学科渗透点
训练学生由特殊到一般,定性、定量逐步深入地研究问题的习惯.
(二)能力训练点
通过课题的引入,训练学生由特殊到一般,定性、定量逐层深入研究问题的思想方法;通过公式的推导,培养学生综合运用知识解决问题的能力.
(一)知识教学点
一条直线与另一条直线所成角的概念及其公式,两直线的夹角公式,能熟练运用公式解题.
20. 已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。
(1) 求双曲线C的方程;
(2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。
19.已知p:|l-|≤2;q:x2-2x+l-m2≤0(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.
18. 设0<a,b,c<1,用反证法证明: (1-a)b,(1-b)c,(1-c)a不同时大于
17. 如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com