题目列表(包括答案和解析)
4.如图2-11建立坐标系,得拱圆的方程:
x2+(y+27.88)2=27.882(-7.2≤y≤0)
2.因为直径的端点为A(x1,y1)、B(x2,y2),则圆心和半径分别为
所以圆的方程为
化简得:x2-(x1+x2)x+x1x2+y2-(y1+y2)y+y1y2=0
即(x-x1)(x-x2)+(y-y1)(y-y2)=0
1.(1)(x-3)2+(y+5)2= 32
4.赵州桥的跨度是37.4m,圆拱高约为7.2m,求这座圆拱桥的拱圆的方程.
作业答案:
3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.
2.已知:一个圆的直径端点是A(x1,y1)、B(x2,y2).
证明:圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.
1.求下列条件所决定的圆的方程:
(1)圆心为 C(3,-5),并且与直线x-7y+2=0相切;
(2)过点A(3,2),圆心在直线y=2x上,且与直线y=2x+5相切.
(四)本课小结
1.圆的方程的推导步骤;
2.圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;
3.求圆的方程的两种方法:(1)待定系数法;(2)轨迹法.
(二)建立圆的标准方程
1.建系设点
由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法.教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).
2.写点集
根据定义,圆就是集合P={M||MC|=r}.
3.列方程
由两点间的距离公式得:
4.化简方程
将上式两边平方得:
(x-a)2+(y-b)2=r2.
(1)
方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.
这时,请大家思考下面一个问题.
问题5:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为 x2+y2=r2.
教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com