11.在等比数列 , 查看更多

 

题目列表(包括答案和解析)

在等比数列         ;数列的前2n项和=          

查看答案和解析>>

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(3)是否存在k∈N*,使得
S1
1
+
S2
2
+…+
Sn
n
<k对任意n∈N*恒成立,若存在,求出k的最小值,若不存在,请说明理由.

查看答案和解析>>

在等比数列{an}中,a2=4,a5=32(n∈N*
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足bn=log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a3+a5=5,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=5-log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(3)设Tn=
1
S1
+
1
S2
+…+
1
Sn
,求Tn

查看答案和解析>>

在等比数列{an}(n∈N*)中,a1>1,公比q>0.设bn=log2an,且b1+b3+b5=6,b1b3b5=0.
(1)求证:数列{bn}是等差数列;
(2)求{bn}的前n项和Sn及{an}的通项an
(3)试比较an与Sn的大小.

查看答案和解析>>

 

一、选择题

1.D   2.A   3.C   4.B   5.D   6.A   7.A   8.A   9.B   10.D

2,4,6

11.40    12.   13.3    14.①②③④

三、解答题

15.解:(1)设数列

由题意得:

解得:

   (2)依题

为首项为2,公比为4的等比数列

   (2)由

16.解:(1)

   (2)由

 

17.解法1:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时。

依题意,设与速度有关的每小时燃料费用为

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

解法2:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时,

依题意,设与速度有关的每小时燃料费用为

元,

且当时等号成立。

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

18.证明:(1)连结AC、BD交于点O,再连结MO

   (2)

   

19.解:(1),半径为1依题设直线

    由圆C与l相切得:

   (2)设线段AB中点为

    代入即为所求的轨迹方程。

   (3)

   

20.解:(1)

   (2)

   (3)由(2)知

在[-1,1]内有解

 

 

 


同步练习册答案