故,.--------------1分 查看更多

 

题目列表(包括答案和解析)


精英家教网
由2x+1>42-x,得2x+1>22(2-x)
解得x+1>2(2-x),即x>1,
所以a=2.
即方程(1-|2x-1|)=ax-1为(1-|2x-1|)=2x-1,
所以2-|2x-1|=2x
设y=2-|2x-1|,y=2x
分别在坐标系中作出两个函数的图象,由图象可知两函数的交点个数为2个.
即方程(1-|2x-1|)=ax-1实数根的个数为2个.
故选C.

查看答案和解析>>

由于电脑故障,使得随机变量ξ的分布列部分数据丢失(以□代替),其表如下:
ξ 1 2 3 4 5 6
p 0.20 0.10 0.□5 0.10 0.1□ 0.20
则其期望为
3.5
3.5

查看答案和解析>>

(本题满分12分)

某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关.若T≤1,则销售利润为0元;若1<T≤3,则销售利润为100元;若T>3,则销售利润为200元.设每台该种电器的无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率分别为p1,p2,p3,又知p1,p2是方程的两个根,且p2=p3

(1)求p1,p2,p3的值;

  (2)记表示销售两台这种家用电器的销售利润总和,求的期望.

查看答案和解析>>

(本小题满分13分)

   某种家用电器每台的销售利润与该电器的无故障使用时间 (单位:年)有关. 若,则销售利润为元;若,则销售利润为元;若,则销售利润为元.设每台该种电器的无故障使用时间这三种情况发生的概率分别为,叉知是方程的两个根,且   (1)求的值;  (2)记表示销售两台这种家用电器的销售利润总和,求的期望.

查看答案和解析>>

 [番茄花园1] 本题共有2个小题,第一个小题满分5分,第2个小题满分8分。

已知数列的前项和为,且

(1)证明:是等比数列;

(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。

同理可得,当n≤15时,数列{Sn}单调递减;故当n=15时,Sn取得最小值.

 


 [番茄花园1]20.

查看答案和解析>>


同步练习册答案