②若OP=(km) .则OQ=10-.所以OA =OB= 查看更多

 

题目列表(包括答案和解析)

椭圆C中心是坐标原点O,焦点在x轴上,离心率e=
2
2
,过椭圆的右焦点且垂直于长轴的弦长为
2

(I)求椭圆C的标准方程;
(II)已知直线l(l不垂直于x轴)交椭圆C于P、Q两点,若
OP
OQ
=0
,求证:点O到直线l的距离是
6
3

查看答案和解析>>

已知圆C经过点A(-2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.
(I)求圆C的方程;
(II)若
OP
OQ
=-2
,求实数k的值;
(III)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

设动点M的坐标为(x,y)(x、y∈R),向量
a
=(x-2,y),
b
=(x+2,y),且|a|+|b|=8,
(I)求动点M(x,y)的轨迹C的方程;
(Ⅱ)过点N(0,2)作直线l与曲线C交于A、B两点,若
OP
=
OA
+
OB
(O为坐标原点),是否存在直线l,使得四边形OAPB为矩形,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

(2013•怀化三模)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0的左焦点F(-c,0)(c>0)作圆x2+y2=a2的切线,切点为E,延长FE交双曲线右支于点P,若
OP
=2
OE
-
OF
,则双曲线的离心率为(  )

查看答案和解析>>

椭圆的中心是原点O,它的短轴长为2
2
,相应于焦点F(c,0)(c>0)的准线l与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程及离心率;
(2)若
OP
OQ
=0
,求直线PQ的方程;
(3)设
AP
AQ
(λ>1),过点P且平行于准线l的直线与椭圆相交于另一点M,证明
FM
=-λ
FQ

查看答案和解析>>


同步练习册答案