题目列表(包括答案和解析)
一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每小时通过管道向所管辖区域供水千吨.
(1)多少小时后,蓄水池存水量最少?
(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?
【解析】第一问中(1)设小时后,蓄水池有水千吨.依题意,当,即(小时)时,蓄水池的水量最少,只有1千吨
第二问依题意, 解得:
解:(1)设小时后,蓄水池有水千吨.………………………………………1分
依题意,…………………………………………4分
当,即(小时)时,蓄水池的水量最少,只有1千吨. ………2分
(2)依题意, ………………………………………………3分
解得:. …………………………………………………………………3分
所以,当天有8小时会出现供水紧张的情况
如图,,,…,,…是曲线上的点,,,…,,…是轴正半轴上的点,且,,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).
(1)写出、和之间的等量关系,以及、和之间的等量关系;
(2)求证:();
(3)设,对所有,恒成立,求实数的取值范围.
【解析】第一问利用有,得到
第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及,
得
第三问
.………………………2分
因为函数在区间上单调递增,所以当时,最大为,即
解:(1)依题意,有,,………………4分
(2)证明:①当时,可求得,命题成立; ……………2分
②假设当时,命题成立,即有,……………………1分
则当时,由归纳假设及,
得.
即
解得(不合题意,舍去)
即当时,命题成立. …………………………………………4分
综上所述,对所有,. ……………………………1分
(3)
.………………………2分
因为函数在区间上单调递增,所以当时,最大为,即
.……………2分
由题意,有. 所以,
已知数列的前项的和为,是等比数列,且,。
⑴求数列和的通项公式;
⑵设,求数列的前项的和。
⑴ ,数列的前项的和为,求证:.
【解析】第一问利用数列
依题意有:当n=1时,;
当时,
第二问中,利用由得:,然后借助于错位相减法
第三问中
结合均值不等式放缩得到证明。
在中,已知 ,面积,
(1)求的三边的长;
(2)设是(含边界)内的一点,到三边的距离分别是
①写出所满足的等量关系;
②利用线性规划相关知识求出的取值范围.
【解析】第一问中利用设中角所对边分别为
由得
又由得即
又由得即
又 又得
即的三边长
第二问中,①得
故
②
令依题意有
作图,然后结合区域得到最值。
某村计划建造一个室内面积为的矩形蔬菜温室。在温室内,沿左、右两侧与后侧内墙各保留宽的通道,沿前侧内墙保留宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?
【解析】本试题考查了实际生活中的最值问题的运用,首先确定设矩形温室的长为xm,则宽为800/xm。
依题意有:种植面积:
运用导数的思想得到最值。
设矩形温室的长为xm,则宽为800/xm。
依题意有:种植面积:
答:当矩形温室的长为20m,宽为40m时种植面积最大,最大种植面积是m2
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com