综上所述.. 查看更多

 

题目列表(包括答案和解析)

2006年普通高等学校招生全国统一考试(北京卷)

理科综合能力测试试题卷(生物部分)

1.以下不能说明细胞全能性的实验是

A.胡萝卜韧皮部细胞培育出植株            B.紫色糯性玉米种子培育出植株

C.转入抗虫基因的棉花细胞培育出植株      D.番茄与马铃薯体细胞杂交后培育出植株

2.夏季,在晴天、阴天、多云、高温干旱四种天气条件下,猕猴桃的净光合作用强度(实际光合速率与呼吸速率之差)变化曲线不同,表示晴天的曲线图是

3.用蔗糖、奶粉和经蛋白酶水解后的玉米胚芽液,通过乳酸菌发酵可生产新型酸奶,下列相关叙述错误的是

A.蔗糖消耗量与乳酸生成量呈正相关        B.酸奶出现明显气泡说明有杂菌污染

C.应选择处于对数期的乳酸菌接种          D.只有奶粉为乳酸菌发酵提供氮源

4.用32P标记了玉米体细胞(含20条染色体)的DNA分子双链,再将这些细胞转入不含32P的培养基中培养,在第二次细胞分裂的中期、后期,一个细胞中的染色体总条数和被32P标记的染色体条数分别是

A.中期20和20、后期40和20             B.中期20和10、后期40和20

C.中期20和20、后期40和10             D.中期20和10、后期40和10

29.(12分)为合理利用水域资源,某调查小组对一个开放性水库生态系统进行了初步调查,部分数据如下表:

(1)浮游藻类属于该生态系统成分中的          ,它处于生态系统营养结构中的         

(2)浮游藻类数量少,能从一个方面反映水质状况好。调查数据分析表明:该水体具有一定的       能力。

(3)浮游藻类所需的矿质营养可来自细菌、真菌等生物的          ,生活在水库淤泥中的细菌代谢类型主要为         

(4)该水库对游人开放一段时间后,检测发现水体己被氮、磷污染。为确定污染源是否来自游人,应检测

          处浮游藻类的种类和数量。

30.(18分)为丰富植物育种的种质资源材料,利用钴60的γ射线辐射植物种子,筛选出不同性状的突变植株。请回答下列问题:

(1)钴60的γ辐射用于育种的方法属于          育种。

(2)从突变材料中选出高产植株,为培育高产、优质、抗盐新品种,利用该植株进行的部分杂交实验如下:

①控制高产、优质性状的基因位于        对染色体上,在减数分裂联会期        (能、不能)配对。

②抗盐性状属于          遗传。

(3)从突变植株中还获得了显性高蛋白植株(纯合子)。为验证该性状是否由一对基因控制,请参与实验设计并完善实验方案:

①步骤1:选择                    杂交。

预期结果:                                                 

②步骤2:                                                 

预期结果:                                                  

③观察实验结果,进行统计分析:如果                    相符,可证明该性状由一对基因控制。

 

31.(18分)为研究长跑中运动员体内的物质代谢及其调节,科学家选择年龄、体重相同,身体健康的8名男性运动员,利用等热量的A、B两类食物做了两次实验。

实验还测定了糖和脂肪的消耗情况(图2)。

请据图分析回答问题:

(1)图1显示,吃B食物后,          浓度升高,引起          浓度升高。

(2)图1显示,长跑中,A、B两组胰岛素浓度差异逐渐          ,而血糖浓度差异却逐渐          ,A组血糖浓度相对较高,分析可能是肾上腺素和          也参与了对血糖的调节,且作用相对明显,这两种激素之间具有          作用。

(3)长跑中消耗的能量主要来自糖和脂肪。研究表明肾上腺素有促进脂肪分解的作用。从能量代谢的角度分析图2,A组脂肪消耗量比B组          ,由此推测A组糖的消耗量相对         

(4)通过检测尿中的尿素量,还可以了解运动员在长跑中          代谢的情况。

 

参考答案:

1.B              2.B              3.D             4.A

29.(12分)

    (1)生产者    第一营养级

    (2)自动调节(或自净化)

    (3)分解作用    异养厌氧型

    (4)入水口

30.(18分)

    (1)诱变

    (2)①两(或不同)    不能

    ②细胞质(或母系)

    (3)①高蛋白(纯合)植株    低蛋白植株(或非高蛋白植株)

    后代(或F1)表现型都是高蛋白植株

    ②测交方案:

    用F1与低蛋白植株杂交

    后代高蛋白植株和低蛋白植株的比例是1:1

    或自交方案:

    F1自交(或杂合高蛋白植株自交)

    后代高蛋白植株和低蛋白植株的比例是3:1

    ③实验结果    预期结果

31.(18分)

    (1)血糖    胰岛素

    (2)减小    增大    胰高血糖素    协同

    (3)高    减少

    (4)蛋白质

 

 

                                             

 

查看答案和解析>>

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

已知幂函数满足

(1)求实数k的值,并写出相应的函数的解析式;

(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。

【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足,得到

因为,所以k=0,或k=1,故解析式为

(2)由(1)知,,因此抛物线开口向下,对称轴方程为:,结合二次函数的对称轴,和开口求解最大值为5.,得到

(1)对于幂函数满足

因此,解得,………………3分

因为,所以k=0,或k=1,当k=0时,

当k=1时,,综上所述,k的值为0或1,。………………6分

(2)函数,………………7分

由此要求,因此抛物线开口向下,对称轴方程为:

时,,因为在区间上的最大值为5,

所以,或…………………………………………10分

解得满足题意

 

查看答案和解析>>

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

【解析】第一问定义域为真数大于零,得到.                            

,则,所以,得到结论。

第二问中, ().

.                          

因为0<a<2,所以.令 可得

对参数讨论的得到最值。

所以函数上为减函数,在上为增函数.

(I)定义域为.           ………………………1分

.                            

,则,所以.  ……………………3分          

因为定义域为,所以.                            

,则,所以

因为定义域为,所以.          ………………………5分

所以函数的单调递增区间为

单调递减区间为.                         ………………………7分

(II) ().

.                          

因为0<a<2,所以.令 可得.…………9分

所以函数上为减函数,在上为增函数.

①当,即时,            

在区间上,上为减函数,在上为增函数.

所以.         ………………………10分  

②当,即时,在区间上为减函数.

所以.               

综上所述,当时,

时,

 

查看答案和解析>>


同步练习册答案