题目列表(包括答案和解析)
已知命题及其证明:
(1)当时,左边=1,右边=
所以等式成立;
(2)假设时等式成立,即
成立,
则当时,
,所以
时等式也成立。
由(1)(2)知,对任意的正整数n等式都成立。
经判断以上评述
A.命题、推理都正确 B命题不正确、推理正确
C.命题正确、推理不正确 D命题、推理都不正确
教材中是用“AB且B
A,则A=B”来定义的,实际上也可以说当集合A与B的元素完全相同时,则A________B.教材中的定义实际上给出了一种证明两个集合相等的方法,即欲证A=B,只需证AB与BA都成立即可.
已知函数.(
)
(1)若在区间
上单调递增,求实数
的取值范围;
(2)若在区间上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)在区间
上单调递增,
则在区间
上恒成立. …………3分
即,而当
时,
,故
.
…………5分
所以.
…………6分
(2)令,定义域为
.
在区间上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵ …………9分
① 若,令
,得极值点
,
,
当,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当,即
时,同理可知,
在区间
上递增,
有,也不合题意;
…………11分
② 若,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使在此区间上恒成立,只须满足
,
由此求得的范围是
. …………13分
综合①②可知,当时,函数
的图象恒在直线
下方.
已知,(其中
)
⑴求及
;
⑵试比较与
的大小,并说明理由.
【解析】第一问中取,则
;
…………1分
对等式两边求导,得
取,则
得到结论
第二问中,要比较与
的大小,即比较:
与
的大小,归纳猜想可得结论当
时,
;
当时,
;
当时,
;
猜想:当时,
运用数学归纳法证明即可。
解:⑴取,则
;
…………1分
对等式两边求导,得,
取,则
。 …………4分
⑵要比较与
的大小,即比较:
与
的大小,
当时,
;
当时,
;
当时,
;
…………6分
猜想:当时,
,下面用数学归纳法证明:
由上述过程可知,时结论成立,
假设当时结论成立,即
,
当时,
而
∴
即时结论也成立,
∴当时,
成立。
…………11分
综上得,当时,
;
当时,
;
当时,
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (
N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由
得
. ……2分
若存在由
得
,
从而有,与
矛盾,所以
.
从而由得
得
. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一.
……10分
证法三:(利用对偶式)设,
,
则.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当时,
,命题成立;
②假设时,命题成立,即
,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com