(Ⅰ)设是上的一点.证明:平面平面, 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)如图1是平面内的三个点,且不重合,是平面内任意一点,若点在直线上,试证明:存在实数,使得:.
(Ⅱ)如图2,设的重心,点且与(或其延长线)分别交于点,若,试探究:的值是否为定值,若为定值,求出这个
定值;若不是定值,请说明理由.
 

查看答案和解析>>

(Ⅰ)如图1,是平面内的三个点,且不重合,是平面内任意一点,若点在直线上,试证明:存在实数,使得:.

(Ⅱ)如图2,设的重心,点且与(或其延长线)分别交于点,若,试探究:的值是否为定值,若为定值,求出这个

 

定值;若不是定值,请说明理由.

 

 

 

 

查看答案和解析>>

(Ⅰ)如图1是平面内的三个点,且不重合,是平面内任意一点,若点在直线上,试证明:存在实数,使得:.
(Ⅱ)如图2,设的重心,点且与(或其延长线)分别交于点,若,试探究:的值是否为定值,若为定值,求出这个
定值;若不是定值,请说明理由.
 

查看答案和解析>>

在平面直角坐标系xOy中,已知直线l:2
2
x-y+3+8
2
=0
和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
3

(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

在平面直角坐标系中,已知焦距为4的椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右顶点分别为A、B,椭圆C的右焦点为F,过F作一条垂直于x轴的直线与椭圆相交于R、S,若线段RS的长为
10
3

(1)求椭圆C的方程;
(2)设Q(t,m)是直线x=9上的点,直线QA、QB与椭圆C分别交于点M、N,求证:直线MN
必过x轴上的一定点,并求出此定点的坐标;
(3)实际上,第(2)小题的结论可以推广到任意的椭圆、双曲线以及抛物线,请你对抛物线y2=2px(p>0)写出一个更一般的结论,并加以证明.

查看答案和解析>>


同步练习册答案