(Ⅱ)求四棱锥的体积. 查看更多

 

题目列表(包括答案和解析)

精英家教网在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,AB=1,直线PB与底面ABCD所成的角为45°,四棱锥P-ABCD的体积V=
23
,E为PB的中点,点F在棱BC上移动.
(1)求证:PF⊥AE;
(2)当F为BC中点时,求点F到平面BDP的距离;
(3)在侧面PAD内找一点G,使GE⊥平面PAC.

查看答案和解析>>

在四棱锥P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,PB=2
5
,PD=4
2
.E是PD的中点.
(1)求证:AE⊥平面PCD;
(2)求平面ACE与平面ABCD所成二面角的余弦值;
(3)在线段BC上是否存在点F,使得三棱锥F-ACE的体积恰为
4
3
,若存在,试确定点F的位置;若不存在,请说明理由.
精英家教网

查看答案和解析>>

精英家教网在四棱锥P-ABCD中,底面ABCD为菱形,且∠ABC=120°,AB=1,侧棱PA与底面所成角为45°,设AC与BD交于点O,M为PA 的中点,OM⊥平面ABCD.
(1)求证:BD⊥平面PAC;
(2)设E是PB的中点,求三棱锥E-PAD的体积;
(3)求平面PAD与平面PBC所成锐二面角的余弦.

查看答案和解析>>

一个四棱锥的直观图和三视图如图所示:
(1)求证:DA⊥PD;
(2)若M为PB的中点,证明:直线CM∥平面PDA;
(3)若PB=1,求三棱锥A-PDC的体积.

查看答案和解析>>

一个四棱锥的直观图和三视图如图所示:
(1)求证:BC⊥PB;
(2)求出这个几何体的体积.
(3)若在PC上有一点E,满足CE:EP=2:1,求证PA∥平面BED.

查看答案和解析>>


同步练习册答案