[解析]在R上是偶函数.故的图象关于y轴对称.作出的图象.截取值域是 的一段.发现a.b的取值只可能在-2.-1.0.1.2中取得.但必须取0.-2?2必须至少取一个.故有5个. 查看更多

 

题目列表(包括答案和解析)

如图,在中,边上的中线,上任意一点,于点.求证:

【解析】本试题主要是考查了平面几何中相似三角形性质的运用。根据已知条件,首先做辅助线,然后利用平行性得到相似比,,然后得到比例相等。充分利用比值问题转化得到结论。

证明:过,交,∴

,   ∵的中点,

,即

 

查看答案和解析>>

已知函数,设函数

(Ⅰ)求证:是奇函数;

(Ⅱ)(1) 求证:

(1) 结合(1)的结论求的值;

(Ⅲ)仿上,设上的奇函数,请你写出一个函数的解析式,并根据第(Ⅱ)问的结论,猜想函数满足的一般性结论.

【解析】本试题主要是考查了函数的奇偶性和函数的求值的运算,以及解析式的求解的综合运用。

 

查看答案和解析>>

已知函数

(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;

(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;

(Ⅲ)当x∈(0,e]时,证明:

【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,

假设存在实数a,使有最小值3,利用,对a分类讨论,进行求解得到a的值。

第三问中,

因为,这样利用单调性证明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)见解析

 

查看答案和解析>>

在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

 (2)若圆与直线交于两点,且,求的值.

【解析】本试题主要是考查了直线与圆的位置关系的运用。

(1)曲线轴的交点为(0,1),

轴的交点为(3+2,0),(3-2,0) 故可设的圆心为(3,t),则有32+(t-1)2=(2)2+t2,解得t=1.

(2)因为圆与直线交于两点,且。联立方程组得到结论。

 

查看答案和解析>>

设F(1,0),点M在x轴上,点P在y轴上,且

(1)当点P在y轴上运动时,求点N的轨迹C的方程;

(2)设是曲线C上的点,且成等差数列,当AD的垂直平分线与x轴交于点E(3,0)时,求点B的坐标。

【解析】本试题主要是对于圆锥曲线的综合考查。首先求解轨迹方程,利用向量作为工具表示向量的坐标,进而达到关系式的求解。第二问中利用数列的知识和直线方程求解点的坐标。

 

查看答案和解析>>


同步练习册答案