①时..所以在上单调增.所以. 查看更多

 

题目列表(包括答案和解析)

设函数

(Ⅰ) 当时,求的单调区间;

(Ⅱ) 若上的最大值为,求的值.

【解析】第一问中利用函数的定义域为(0,2),.

当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);

第二问中,利用当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

解:函数的定义域为(0,2),.

(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);

(2)当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

 

查看答案和解析>>

给出以下五个命题,所有正确命题的序号为________

①两个向量夹角的范围与两条异面直线的夹角的范围一致;

a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件;

③函数的定域为R,则k的取值范围是0<k≤1;

④要得到y=3sin(2x+)的图象,只需将y=3sin2x的图象左移个单位;

a>0时,f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的最大值是3.

查看答案和解析>>

已知函数

(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;

(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;

(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在,且上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x0为首项的等差数列.

查看答案和解析>>

已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减.给出以下四个命题:

①f(2)=0;

②x=-4为函数y=f(x)图像的一条对称轴;

③函数y=f(x)在[8,10]上单调递增;

④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.

以上命题中所有正确命题的序号为________.

 

查看答案和解析>>

已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减.给出以下四个命题:
①f(2)=0;
②x=-4为函数y=f(x)图像的一条对称轴;
③函数y=f(x)在[8,10]上单调递增;
④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.
以上命题中所有正确命题的序号为________.

查看答案和解析>>


同步练习册答案