(2)若.①试确定点F的坐标,②设P是点C的轨迹上的动点.猜想△PBF的周长最大时点P的位置.并证明你的猜想. 查看更多

 

题目列表(包括答案和解析)

设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足数学公式
(2)当n≥3时,若数学公式,求证:数学公式
(3)当n>3时,某同学对(2)的逆命题,即:“若数学公式,则数学公式”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足
(2)当n≥3时,若,求证:
(3)当n>3时,某同学对(2)的逆命题,即:“若,则”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

已知点E,F的坐标分别是(-2,0)、(2,0),直线EP,FP相交于点P,且它们的斜率之积为
(1)求证:点P的轨迹在椭圆上;
(2)设过原点O的直线AB交(1)题中的椭圆C于点A、B,定点M的坐标为,试求△MAB面积的最大值,并求此时直线AB的斜率kAB
(3)某同学由(2)题结论为特例作推广,得到如下猜想:
设点M(a,b)(ab≠0)为椭圆内一点,过椭圆C中心的直线AB与椭圆分别交于A、B两点.则当且仅当kOM=-kAB时,△MAB的面积取得最大值.
问:此猜想是否正确?若正确,试证明之;若不正确,请说明理由.

查看答案和解析>>

(2012•普陀区一模)设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足|
FP1
|+|
FP2
|+|
FP3
|=6

(2)当n≥3时,若
FP1
+
FP2
+…+
FPn
=
0
,求证:|
FP1
|+|
FP2
|+…+|
FPn
|=np

(3)当n>3时,某同学对(2)的逆命题,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,则
FP1
+
FP2
+…+
FPN
=
0
”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

(2008•普陀区二模)已知点E,F的坐标分别是(-2,0)、(2,0),直线EP,FP相交于点P,且它们的斜率之积为-
1
4

(1)求证:点P的轨迹在椭圆C:
x2
4
+y2=1
上;
(2)设过原点O的直线AB交(1)题中的椭圆C于点A、B,定点M的坐标为(1,
1
2
)
,试求△MAB面积的最大值,并求此时直线AB的斜率kAB
(3)某同学由(2)题结论为特例作推广,得到如下猜想:
设点M(a,b)(ab≠0)为椭圆C:
x2
4
+y2=1
内一点,过椭圆C中心的直线AB与椭圆分别交于A、B两点.则当且仅当kOM=-kAB时,△MAB的面积取得最大值.
问:此猜想是否正确?若正确,试证明之;若不正确,请说明理由.

查看答案和解析>>


同步练习册答案