解得. 查看更多

 

题目列表(包括答案和解析)

①.已知函数f(t)=|t+1|-|t-3|.则f(t)>2的解为
t>2
t>2

②.在直角坐标系中,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,则直线l被曲线C所截得的弦长为
7
5
7
5

查看答案和解析>>

解不等式
x2+2x-3-x2+x+6
<0所得解集是
{x|x<-3或-2<x<1或x>3}
{x|x<-3或-2<x<1或x>3}

查看答案和解析>>

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。

某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,

(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;

(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?

查看答案和解析>>

.(本题满分14分)
已知函数 (为自然对数的底数).
(1)求的最小值;
(2)不等式的解集为,若求实数的取值范围;
(3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.

查看答案和解析>>


同步练习册答案