题目列表(包括答案和解析)
(Ⅰ)判断函数f(x)=+是否是集合M中的元素,并说明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.
已知是由满足下述条件的函数构成的集合:对任意,
① 方程有实数根;② 函数的导数满足.
(Ⅰ)判断函数是否是集合中的元素,并说明理由;
(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,
设M是由满足下列条件的函数构成的集合:①方程,有实数根②函数的导数满足.
(I) 若函数为集合M中的任意一个元素,证明:方程只有一个实数根;
(II) 判断函数是否是集合M中的元素,并说明理由;
(III) 设函数为集合M中的任意一个元素,对于定义域中任意,当,且时,证明:.
已知是由满足下述条件的函数构成的集合:对任意,
① 方程有实数根;② 函数的导数满足.
(Ⅰ)判断函数是否是集合中的元素,并说明理由;
(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,
(Ⅰ)判断函数f(x)=是否是集合M中的元素,并说明理由;
(Ⅱ )集合M中的元素f(x)具有下面的性质:“若f(x)的定义域为D,则对于任意[m,n]D,都存在x0∈ [m,n],使得等式f(n)-f(m)=(n-m)(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当,且时,.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com