17. (本题满分14分.第1小题6分.第2小题8分) 袋中有8个仅颜色不同.其它都相同的球.其中1个为黑球.3个为白球.4个为红球. (1)若从袋中一次摸出2个球.求所摸出的2个球恰为异色球的概率, (2)若从袋中一次摸出3个球.求所摸得的3球中.黑球与白球的个数都没有超过红球的个数的不同摸法的种数. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分,第1小题6分,第2小题8分)

已知函数,其中常数a > 0.

(1) 当a = 4时,证明函数f(x)在上是减函数;

(2) 求函数f(x)的最小值.

 

查看答案和解析>>

(本题满分14分,第1小题6分,第2小题8分)

已知函数x∈R,且f(x)的最大值为1.

(1) 求m的值,并求f(x)的单调递增区间;

(2) 在△ABC中,角ABC的对边abc,若,且,试判断△ABC的形状.

 

查看答案和解析>>

(本题满分14分,第1小题6分,第2小题8分)
已知函数,其中常数a > 0.
(1) 当a = 4时,证明函数f(x)在上是减函数;
(2) 求函数f(x)的最小值.

查看答案和解析>>

(本题满分14分,第1小题6分,第2小题8分)
已知函数x∈R,且f(x)的最大值为1.
(1) 求m的值,并求f(x)的单调递增区间;
(2) 在△ABC中,角ABC的对边abc,若,且,试判断△ABC的形状.

查看答案和解析>>

(本题满分14分,第1小题6分,第2小题8分)

  如图,在四棱锥中,四边形为平行四边形,,  上一点,且平面

  ⑴求证:

⑵如果点为线段的中点,求证:∥平面


查看答案和解析>>

一、填空题(本大题共11题,每小题5分,满分55分)

1.     2.    3.      4.   5.           6.相离    7.     8.    9.     10.     11. 

二、选择题(本大题共4题,每小题5分,满分20分)

12.B   13. D    14.D    15.C

 

三、解答题(本大题满分75分)

16.(1)证明:易知,又由平面,得,从而平面,故;                                     (4分)

  (2)解:延长交圆于点,连接,则,得或它的补角为异面直线所成的角.                       (6分)

由题意,解得.        (8分)

,得,           (10分)

由余弦定理得,得异面直线所成的角为.                            (12分)

17.解:(1)摸出的2个球为异色球的不同摸法种数为种,从8个球中摸出2个球的不同摸法种数为,故所求的概率为; (6分)

(2)符合条件的摸法包括以下三种:一种是所摸得的3球中有1个红球,1个黑球,1个白球,共有种不同摸法,                   (8分)

一种是所摸得的3球中有2个红球,1个其它颜色球,共有种不同摸法,                                                   (10分)

一种是所摸得的3球均为红球,共有种不同摸法,       (12分)

故符合条件的不同摸法共有种.                           (14分)

18.解:(1) 由已知,相减得,由,又,得,故数列是一个以为首项,以为公比的等比数列.                    (4分)

    从而  ;                 (6分)

(2),                             (7分)

,故,            (11分)

于是

,即时,

,即时,

,即时,不存在.                    (14分)

19.(1)证明:任取,且

 

.

 所以在区间上为增函数.                        (5分)

 函数在区间上为减函数.                        (6分)

   (2)解:因为函数在区间上为增函数,相应的函数值为,在区间上为减函数,相应的函数值为,由题意函数的图像与直线有两个不同的交点,故有,              (8分)

    易知分别位于直线的两侧,由,得,故,又两点的坐标满足方程,故得,即,(12分)

    故

    当时,.

    因此,的取值范围为.                          (17分)

20. 解:(1)设,易知,由题设

其中,从而,且

又由已知,得

时,,此时,得

,故

时,点为原点,轴,轴,点也为原点,从而点也为原点,因此点的轨迹的方程为,它表示以原点为顶点,以为焦点的抛物线;                                    (4分)

(2)由题设,可设直线的方程为,直线的方程为,又设

 则由,消去,整理得

 故,同理,                 (7分)

 则

当且仅当时等号成立,因此四边形面积的最小值为.

                                                          (9分)

    (3)当时可设直线的方程为

,得

     故,              (13分)

    

     当且仅当时等号成立.                                (17分)

 当时,易知,得

故当且仅当时四边形面积有最小值.         (18分)

 

 


同步练习册答案