(Ⅲ)令,若,又的图象在轴上截得的弦的长度为.且 .试确定的符号. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax2+bx+c(a>0,bc≠0),
(Ⅰ)若函数f(x)的最小值是f(-1)=0,且f(0)=1,求F(2)+F(-2)的值;
(Ⅱ)在(Ⅰ)的条件下,f(x)>x+k在区间[-3,-1]恒成立,试求k的取值范围;
(Ⅲ)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为m,且0<m≤2,试确定c-b的符号。

查看答案和解析>>

已知函数f(x)=ax2+bx+c(a>0且bc≠0).
(1)若|f(0)|=|f(1)|=|f(-1)|=1,试求f(x)的解析式;
(2)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为l,且0<|x1-x2|≤2,试确定c-b的符号.

查看答案和解析>>

已知函数f(x)=ax2+bx+c(a>0且bc≠0).
(1)若|f(0)|=|f(1)|=|f(-1)|=1,试求f(x)的解析式;
(2)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为l,且0<|x1-x2|≤2,试确定c-b的符号.

查看答案和解析>>

已知函数f(x)=ax2+bx+c(a>0且bc≠0).
(1)若|f(0)|=|f(1)|=|f(-1)|=1,试求f(x)的解析式;
(2)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为l,且0<|x1-x2|≤2,试确定c-b的符号.

查看答案和解析>>

已知函数f(x)=ax2+bx+c(a>0,bc≠0),
(Ⅰ)若函数f(x)的最小值是f(-1)=0,且f(0)=1,求F(2)+F(-2)的值;
(Ⅱ)在(Ⅰ)的条件下,f(x)>x+k在区间[-3,-1]恒成立,试求k的取值范围;
(Ⅲ)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为m,且 0<m≤2,试确定c-b的符号.

查看答案和解析>>

一、选择题:本大题每小题5分,满分50分.

1

2

3

4

5

6

7

8

9

10

C

A

A

C

B

A

B

D

D

B

二、填空题:本大题共5小题,每小题5分,满分20分,其中14,15题是选做题,考生只能选做一题,,若两题全都做的,只计算前一题的得分.

11.(2,+∞)     12.    13. 4      14.     15. 9

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程或演算步骤.

16.(本小题满分12分)

解:(Ⅰ)∵ ,   ………………1分

  ………………4分

又 ∵  ,  ∴    …………………5分

(Ⅱ)由,…………………7分

   …………………………9分

由正弦定理 , 得 ……………………12分

17.(本小题满分13分)

证明: (1) ∵ 三棱柱为直三棱柱,

         ∴  平面, ∴,

     ∵  , , ,

       ∴ ,

∴   , 又 ,

   ∴ 平面

∴      ……………………………………7分

   (2) 令的交点为, 连结.

       ∵  的中点, 的中点, ∴ .

       又 ∵平面, 平面,

      ∴∥平面.    ………………………13分

18.(本小题满分13分)

解: (1) 由题意得  , 即 ,…………………1分

        当时 , ,…………4分

         当时, , ………………5分

         ∴  , ……………………6分

     (2) 由(1)得,…………………8分

           ∴ 

                   . ……………………11分

          因此,使得成立的必须且只需满足, 即,

故满足要求的的最小正整数………………13分

19.(本小题满分14分)

解: (1)设圆的圆心为,

依题意圆的半径     ……………… 2分

∵ 圆轴上截得的弦的长为.

  

故    ………………………… 4分

 ∴   

    ∴  圆的圆心的轨迹方程为 ………………… 6分

(2)    ∵   ,  ∴   ……………………… 9分

令圆的圆心为, 则有 () ,…………… 10分

又  ∵   …………………… 11分

∴    ……………………… 12分

∴       ……………………… 13分

∴   圆的方程为   …………………… 14分

21.(本小题满分14分)

解:(Ⅰ)由已知

解得,   …………………2分

∴   ,     ∴     …………4分

∴  . ……………………5分

   (Ⅱ)在(Ⅰ)条件下,在区间恒成立,即在区间恒成立,

从而在区间上恒成立,…………………8分

令函数,

则函数在区间上是减函数,且其最小值

的取值范围为…………………………10分

   (Ⅲ)由,得

∵       ∴,………………11分

设方程的两根为,则,,

∵  ,  ∴  ,    ∴

∵  ,  ∴ 

      ∴  ……………14分

21.(本小题满分14分)

解:  (Ⅰ)解:当时,,……………1分

,则.…………………3分

所以,曲线在点处的切线方程为

.……………4分

(Ⅱ)解:.…………6分

由于,以下分两种情况讨论.

(1)当时,令,得到,

变化时,的变化情况如下表:

0

0

极小值

极大值

所以在区间,内为减函数,在区间内为增函数

故函数在点处取得极小值,且

函数在点处取得极大值,且.…………………10分

(2)当时,令,得到

变化时,的变化情况如下表:

0

0

极大值

极小值

所以在区间,内为增函数,在区间内为减函数.

函数处取得极大值,且

函数处取得极小值,且.………………14分

 

 

 


同步练习册答案