题目列表(包括答案和解析)
设函数,已知不论为何实数时,恒有,对于正数数列,其前项和()
(1)求的值;
(2)求数列的通项公式;
(3)是否存在等比数列,使得对一切正整数都成立,并证明你的结论;
(4)若,且数列的前项和为,比较与的大小。
(本小题满分12分)数列的通项是关于的不等式的解集中整数的个数, (1)求数列的通项公式; (2)是否存在实数使不等式对一切大于1的自然数恒成立,若存在试确定的取值范围,否则说明原因.
已知函数.
(Ⅰ)求的值;
(Ⅱ)若数列满足,求数列的通项公式;
(Ⅲ)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在,请求出的取值范围;若不存在,请说明理由.
已知函数.
(Ⅰ)求的值;
(Ⅱ)若数列满足,求数列的通项公式;
(Ⅲ)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在,请求出的取值范围;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com