25.已知:如图.E.F是平行四边行ABCD的对角线AC上的两点.AE=CF. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.

 

 

 

 

 

 

 

 

1.(1)填空:菱形ABCD的边长是      、面积是    、  高BE的长是     ;

2.(2)探究下列问题:

若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时

②  △APQ的面积S关于t的函数关系式,以及S的最大值;

3.(3)在运动过程中是否存在某一时刻使得△APQ为等腰三角形,若存在求出t的值;若不存在说明理由.

 

查看答案和解析>>

(本题满分10分)

已知:如图,矩形DEFG的一边DE在△ABC的边BC上,顶点GF分别在边ABAC上,AH是边BC上的高,AHGF相交于点K,已知BC=12,AH=6,EFGF=1∶2,求矩形DEFG的周长.

 

 

查看答案和解析>>

(本题满分7分)如图,已知一次函数y=kx+b的图象与反比例函数

 

的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2.

求:(1)一次函数的解析式;

(2)△ABC的面积.

 

查看答案和解析>>

(本题满分12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点BCE)、F在同一条直线上.∠ACB = ∠EDF= 90°,∠DEF = 45°,AC =6cm,BC = 6 cm,EF = 12cm.

如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DEAC相交于点Q,连接PQ,设移动时间为t(s).解答下列问题:

(1)当t为何值时,点A在线段PQ的垂直平分线上?

(2)当t为何值时,△PQE是直角三角形?

(3)连接PE,设四边形APEC的面积为y(cm2),求yt之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.

(4)是否存在某一时刻t,使PQF三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由

 

查看答案和解析>>

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

一.选择题:(本大题共15个题;每小题3分,共45分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

答案

B

C

A

C

D

A

B

A

D

B

A

B

D

A

A

二.填空题:(本大题共5小题;每小题3分,共15分。)

16.4       17. 36 ;        18. 20000;   19.

 

 

20.109

 

 

三.解答题:(本大题共6小题,共40分。解答应写出文字说明、证明过程或演算步骤。)

21.

解:(1)原式         ---1分

   ---2分

                 ---3分

(2)

解:去分母得2x-5=3(2x-1)

即2x-5=6x-3---1分

∴4x=-2

x= ---2分

当x=时,2x-1≠0

所以x=是原方程的解---3分

22.(本题6分)

(1)   C      ---2分

(2)没有考虑---4分

(3) ---6分

23.(本题7分)

解(1)当x30时,设函数关系式为y=kx+b

-------2分

解得

所以y=3x-30-------4分

(2)4月份上网20小时,应付上网费60元-------5分

(3) 由75=3x-30解得x=35,所以5月份上网35个小时. -------7分

24.(本题7分)

解:⑴设蓝球个数为个                -------1分

则由题意得         -------2分

            

答:蓝球有1个                   --------3分

 

 

                                                             --------4分

 

 

                                                             ---------5分

          ∴  两次摸到都是白球的概率 =                   

                                        =                    ----------7分

 

25.(本题6分)

证明:(1)∵AE=CF

∴AE+EF=CF+FE即AF=CE  --------- 1分

又ABCD是平行四边形,∴AD=CB,AD∥BC

∴∠DAF=∠BCE   ---------2分

在△ADF与△CBE中

      ---------3分

∴△ADF≌△CBE(SAS)---------4分

(2)∵△ADF≌△CBE

∴∠DFA=∠BEC ---------5分

∴DF∥EB---------6分

 

26.(本题8分)

(1)由已知可得∠AOE=60o  , AE=AE

由A′E//轴,得△OAE是直角三角形,

设A的坐标为(0,b)

AE=AE=,OE=2b

所以b=1,A、E的坐标分别是(0,1)与(,1) --------3分

(2)                  因为A、E在抛物线上,所以

所以,函数关系式为

与x轴的两个交点坐标分别是(,0)与(,0)--------6分

(3)                  不可能使△A′EF成为直角三角形。

∵∠FAE=∠FAE=60o,若△A′EF成为直角三角形,只能是∠AEF=90o或∠AFE=90o

若∠AEF=90o,利用对称性,则∠AEF=90o, A、E、A三点共线,O与A重合,与已知矛盾;

同理若∠AFE=90o也不可能

所以不能使△A′EF成为直角三角形。--------8分

 


同步练习册答案