在中. 由余弦定理有 查看更多

 

题目列表(包括答案和解析)

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,M是BD的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求证:EM∥平面ABC;

(2)试问在棱DC上是否存在点N,使NM⊥平面BDE?若存在,确定点N的位置;若不存在,请说明理由.

(3)求二面角D-EB-A的大小的余弦值.

查看答案和解析>>

 如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视     图的侧视图、俯视图.在直观图中,的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求证:EM∥平面ABC

(2)试问在棱DC上是否存在点N,使NM⊥平面? 若存在,确定点N的位置;若不存在,请说明理由.

(3)求二面角D—EB—A的大小的余弦值.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

在△ABC中,为三个内角为三条边,

(I)判断△ABC的形状;

(II)若,求的取值范围.

【解析】本题主要考查正余弦定理及向量运算

第一问利用正弦定理可知,边化为角得到

所以得到B=2C,然后利用内角和定理得到三角形的形状。

第二问中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,则A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。

【解析】本试题主要考查了余弦定理的运用。利用由题意得,

并且得到结论。

解:(Ⅰ)由题意得,………1分…………1分

(Ⅱ)………………1分

   

 

查看答案和解析>>


同步练习册答案