(Ⅰ)求函数的不动点, 查看更多

 

题目列表(包括答案和解析)

对于函数的“不动点”;若 的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即

   (1)求证:

   (2)若的取值范围.

查看答案和解析>>

已知函数f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,设m(x)=h(x)-g(x),n(x)=g(x)-f(x),当x>1时,试比较m(x)与n(x)的大小(只需要写出结果,不必证明);
(2)若a=
12
,设P是函数g(x)图象在第一象限上的一个动点,过点P作平行于x轴的直线
与函数h(x)和f(x)的图象分别交于A、B两点,过点P作平行于y轴的直线与函数h(x)和f(x)的图象分别交于C、D两点,求证:|AB|=|CD|.

查看答案和解析>>

已知函数f(x)=ex-
1
ex
g(x)=ex+
1
ex
,动直线x=t分别与函数y=f(x)、y=g(x)的图象分别交于点A(t,f(t))、B(t,g(t)),在点A处作函数y=f(x)的图象的切线,记为直线l1,在点B处作函数y=g(x)的图象的切线,记为直线l2
(Ⅰ)证明:不论t取何实数值,直线l1与l2恒相交;
(Ⅱ)若直线l1与l2相交于点P,试求点P到直线AB的距离;
(Ⅲ)当t<0时,试讨论△PAB何时为锐角三角形?直角三角形?钝角三角形?

查看答案和解析>>

已知函数f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,设m(x)=h(x)-g(x),n(x)=g(x)-f(x),当x>1时,试比较m(x)与n(x)的大小(只需要写出结果,不必证明);
(2)若数学公式,设P是函数g(x)图象在第一象限上的一个动点,过点P作平行于x轴的直线
与函数h(x)和f(x)的图象分别交于A、B两点,过点P作平行于y轴的直线与函数h(x)和f(x)的图象分别交于C、D两点,求证:|AB|=|CD|.

查看答案和解析>>

已知函数f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,设m(x)=h(x)-g(x),n(x)=g(x)-f(x),当x>1时,试比较m(x)与n(x)的大小(只需要写出结果,不必证明);
(2)若a=
1
2
,设P是函数g(x)图象在第一象限上的一个动点,过点P作平行于x轴的直线
与函数h(x)和f(x)的图象分别交于A、B两点,过点P作平行于y轴的直线与函数h(x)和f(x)的图象分别交于C、D两点,求证:|AB|=|CD|.

查看答案和解析>>

一、选择题

1.C 解析:关于y轴的对称图形,可得

图象,再向右平移一个单位,即可得的图象,即的图

2,4,6

2.A 解析:由题可知,故选A.

3.D 解析:上恒成立,即恒成立,故选D.

4.C  解析:令公比为q,由a1=3,前三项的和为21可得q2+q-6=0,各项都为正数,所以q=2,所以,故选C.

5.C  解析:由图可知,阴影部分面积.

6.A  解析:故在[-2,2]上最大值为,所以最小值为,故选A.

7.A  解析:y值对应1,x可对应±1,y值对应4,x可对应±2,故定义域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9种情况.

8.B  可采取特例法,例皆为满足条件的函数,一一验证可知选B.

二、填空题:

9.答案:6   解析:∵     ∴a7+a­11=6.

10.答案a=3、2π  解析:的上半圆

面积,故为2π.

11.答案:20  解析:由数列相关知识可知

12.答案:

解析:由题可知 ,故定义域为

13.答案:2   解析:由a,b,c成等差数列知①,由②,

由c>b>a知角B为锐角,③,联立①②③得b=2.

故当时,

三、解答题:

15.解:(Ⅰ)由题可知函数定义域关于原点对称.

    当

    则

    ∴

    当

    则

   ∴

    综上所述,对于,∴函数是偶函数.

(Ⅱ)当x>0时,

∴函数上是减函数,函数上是增函数.

(另证:当

∴函数上是减函数,在上是增函数.

16.解:(Ⅰ)∵函数图象过点A(0,1)、B(,1)

  ∴b=c

∵当

  ③

联立②③得        

(Ⅱ)①由图象上所有点向左平移个单位得到的图象

②由的图象上所有点的纵坐标变为原来的倍,得到

的图象

③由的图象上所有点向下平移一个单位,得到

的图象

17.(1)证明:由题设,得

又a1-1=1,

所以数列{an-n}是首项为1,且公比为4的等比数列.

(Ⅱ)解:由(Ⅰ)可知,于是数列{ an }的通项公式为

所以数列{an}的前n项和

18.分析:求停车场面积,需建立长方形的面积函数. 这里自变量的选取十分关键,通常有代数和三角两种设未知数的方法,如果设长方形PQCR的一边长为x(不妨设PR=x),则另一边长

这样SPQCR=PQ?PR=x?(100-),但该函数的最值不易求得,如果将∠BAP作为自变量,用它可表示PQ、PR,再建立面积函数,则问题就容易得多,于是可求解如下;

解:延长RP交AB于M,设∠PAB=,则

AM=90

       

,   ∵

∴当,SPQCR有最大值

答:长方形停车场PQCR面积的最大值为平方米.

19.解:(Ⅰ)【方法一】由

依题设可知,△=(b+1)24c=0.

.

【方法二】依题设可知

为切点横坐标,

于是,化简得

同法一得

(Ⅱ)由

可得

依题设欲使函数内有极值点,

则须满足

亦即

故存在常数,使得函数内有极值点.

(注:若,则应扣1分. )

20.解:(Ⅰ)设函数

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常数k=8.

(Ⅲ)由(Ⅱ)知 

可知数列为首项,8为公比的等比数列

即以为首项,8为公比的等比数列. 则 

.


同步练习册答案