思维障碍 有些同学对比较与的大小.只想到求出它们的值.而此题函数的表达式不确定无法代值.所以无法比较.出现这种情况的原因.是没有充分挖掘已知条件的含义.因而思维受到阻碍.做题时要全面看问题.对每一个已知条件都要仔细推敲.找出它的真正含义.这样才能顺利解题.提高思维的变通性.(2) 联想能力的训练 查看更多

 

题目列表(包括答案和解析)

某同学对函数f(x)=xsinx进行研究后,得出以下结论:
①函数y=f(x)的图象是轴对称图形;
②对任意实数x,|f(x)|≤|x|均成立;
③函数y=f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点的距离相等;
④当常数k满足|k|>1时,函数y=f(x)的图象与直线y=kx有且仅有一个公共点.
其中所有正确结论的序号是(  )

查看答案和解析>>

某学校高一年级组建了A、B、C、D四个不同的“研究性学习”小组,要求高一年级学生必须参加,且只能参加一个小组的活动.假定某班的甲、乙、丙三名同学对这四个小组的选择是等可能的.
(1)求甲、乙、丙三名同学选择四个小组的所有选法种数;
(2)求甲、乙、丙三名同学中至少有二人参加同一组活动的概率;
(3)设随机变量X为甲、乙、丙三名同学参加A小组活动的人数,求X的分布列与数学期望EX.

查看答案和解析>>

(2009•浦东新区二模)一位同学对三元一次方程组
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
(其中实系数ai,bi,ci(i=1,2,3)不全为零)的解的情况进行研究后得到下列结论:
结论1:当D=0,且Dx=Dy=Dz=0时,方程组有无穷多解;
结论2:当D=0,且Dx,Dy,Dz都不为零时,方程组有无穷多解;
结论3:当D=0,且Dx=Dy=Dz=0时,方程组无解.
但是上述结论均不正确.下面给出的方程组可以作为结论1、2和3的反例依次为(  )
(1)
x+2y+3z=0
x+2y+3z=1
x+2y+3z=2
;  (2)
x+2y=0
x+2y+z=0
2x+4y=0
;  (3)
2x+y=1
-x+2y+z=0
x+3y+z=2

查看答案和解析>>

原有m个同学准备展开通信活动,每人必须给另外(m-1)个同学写1封信,后来又有n个同学对活动感兴趣,若已知5>n>1,且由于增加了n个同学而多写了74封信,则原有同学人数m=
 

查看答案和解析>>

某同学对函数f(x)=xcosx进行研究后,得出以下结论:
①函数y=f(x)的图象是中心对称图形;
②对任意实数x,|f(x)|≤|x|恒成立;
③函数y=f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点的距离相等;
④函数y=f(x)的图象与x轴有无穷多个公共点,且任意相邻两点的距离相等;
⑤当常数k满足|k|>1时,函数y=f(x)图象与直线y=kx有且只有一个公共点.
正确的命题的序号有
①②③⑤
①②③⑤

查看答案和解析>>


同步练习册答案