∴得到两个焦点为:.. --2分 查看更多

 

题目列表(包括答案和解析)

设F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,若椭圆C上的点A(1,
3
2
)到F1,F2两点的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标;
(2)过点P(1,
1
4
)的直线与椭圆交于两点D、E,若DP=PE,求直线DE的方程;
(3)过点Q(1,0)的直线与椭圆交于两点M、N,若△OMN面积取得最大,求直线MN的方程.

查看答案和解析>>

设F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,若椭圆C上的点A(1,
3
2
)到F1,F2两点的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标;
(2)过点P(1,
1
4
)的直线与椭圆交于两点D、E,若DP=PE,求直线DE的方程;
(3)过点Q(1,0)的直线与椭圆交于两点M、N,若△OMN面积取得最大,求直线MN的方程.

查看答案和解析>>

设F1,F2分别是椭圆(a>b>0)的左、右焦点

(1)若椭圆C上的点到F1,F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点P是(1)中所得椭圆上的动点,,求PQ的最大值;

(3)已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.

查看答案和解析>>

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.

(1)求椭圆的方程;

(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。

解:(1)椭圆的顶点为,即

,解得椭圆的标准方程为 --------4分

(2)由题可知,直线与椭圆必相交.

①当直线斜率不存在时,经检验不合题意.                    --------5分

②当直线斜率存在时,设存在直线,且.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直线的方程为 

 

查看答案和解析>>

若椭圆或双曲线上存在点P,使得点P到两个焦点的距离之比为2:1,则称此椭圆或双曲线为“倍分曲线”,下列曲线中是“倍分曲线”的是
[     ]
A.
B.
C.
D.x2-y2=1

查看答案和解析>>


同步练习册答案