.其中.代表大气中某类随时间t变化的典型污染物质的含量,参数a代表某个已测定的环境气象指标.且.的值域,的表达式, 查看更多

 

题目列表(包括答案和解析)

某市环保部门通过研究多年来该地区的大气污染状况后,建立了一个预测该市一天中的大气污染指标f(t)与时间t(单位:小时)之间的关系的函数模型:f(t)=|g(t)+
1
3
-a|+2a,t∈[0,24)
,其中,g(t)=
1
2
sin(
π
24
|t-18|)
代表大气中某类随时间t变化的典型污染物质的含量;参数a代表某个已测定的环境气象指标,且a∈[0,
3
4
]

(1)求g(t)的值域;
(2)求f(t)的最大值M(a)的表达式;
(3)若该市政府要求每天的大气环境综合指数不得超过2.0,试问:若按给定的函数模型预测,该市目前的大气环境综合指数是否会超标?请说明理由.

查看答案和解析>>

某市环保部门通过研究多年来该地区的大气污染状况后,建立了一个预测该市一天中的大气污染指标f(t)与时间t(单位:小时)之间的关系的函数模型:,其中,代表大气中某类随时间t变化的典型污染物质的含量;参数a代表某个已测定的环境气象指标,且
(1)求g(t)的值域;
(2)求f(t)的最大值M(a)的表达式;
(3)若该市政府要求每天的大气环境综合指数不得超过2.0,试问:若按给定的函数模型预测,该市目前的大气环境综合指数是否会超标?请说明理由.

查看答案和解析>>

某市环保部门通过研究多年来该地区的大气污染状况后,建立了一个预测该市一天中的大气污染指标f(t)与时间t(单位:小时)之间的关系的函数模型:数学公式,其中,数学公式代表大气中某类随时间t变化的典型污染物质的含量;参数a代表某个已测定的环境气象指标,且数学公式
(1)求g(t)的值域;
(2)求f(t)的最大值M(a)的表达式;
(3)若该市政府要求每天的大气环境综合指数不得超过2.0,试问:若按给定的函数模型预测,该市目前的大气环境综合指数是否会超标?请说明理由.

查看答案和解析>>

一、选择题:

2,4,6

二、填空题:

13、  14、 15、75  16、  17、②  18、④   19、

20、21、22、23、24、25、

26、

三、解答题:

27解:(1)当时,

,∴上是减函数.

(2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 当时,  不恒成立;

时,不等式恒成立,即,∴.

时,不等式不恒成立. 综上,的取值范围是.

28解:(1)

(2)20 

20与=3解得b=4,c=5或b=5,c= 4

(3)设D到三边的距离分别为x、y、z,则 

 又x、y满足

画出不等式表示的平面区域得: 

29(1)证明:连结,则//,  

是正方形,∴.∵,∴

,∴.  

,∴

(2)证明:作的中点F,连结

的中点,∴

∴四边形是平行四边形,∴

的中点,∴

,∴

∴四边形是平行四边形,//

∴平面

平面,∴

(3)

. 

30解: (1)由,

,

则由,解得F(3,0) 设椭圆的方程为,

,解得 所以椭圆的方程为  

(2)因为点在椭圆上运动,所以,   从而圆心到直线的距离. 所以直线与圆恒相交

又直线被圆截得的弦长为

由于,所以,则,

即直线被圆截得的弦长的取值范围是

31解:(1)g(t) 的值域为[0,]

(2)

(3)当时,+=<2;

时,.

所以若按给定的函数模型预测,该市目前的大气环境综合指数不会超标。

32解:(1)

 当时,时,

 

 的极小值是

(2)要使直线对任意的都不是曲线的切线,当且仅当时成立,

(3)因最大值

 ①当时,

 

  ②当时,(?)当

 

(?)当时,单调递增;

1°当时,

2°当

(?)当

(?)当

综上 

 

 


同步练习册答案