20.已知正项数列中..点在抛物线 上,数列中.点在过点.以为方向向量的直线上. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)已知各项均为正数的数列中,是数列的前项和,对任意,均有  (1).求常数的值;(2)求数列的通项公式;(3).记,求数列的前项和。 

查看答案和解析>>

(本小题13分)已知等比数列满足:,且,的等差中项。

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求  成立的正整数的最小值。

查看答案和解析>>

(本小题13分)

已知等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求使  成立的正整数的最小值.

 

查看答案和解析>>

(本大题满分13分)设函数是定义域在上的单调函数,且对于任意正数,已知.

(1)求的值;

(2)一个各项均为正数的数列满足:,其中是数列的前n项的和,求数列的通项公式;

(3)在(2)的条件下,是否存在正数,使 对一切成立?若存在,求出M的取值范围;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分13分)

某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.

   (I)求该选手在复赛阶段被淘汰的概率;

   (II)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望和方差.

查看答案和解析>>

一.选择题

1~10  BADDA    BCBCD

二.填空题

11.2      12.      13.      14.8        15.45

三.解答题

16.解:因为,所以 ………………………………(1分)

   由,解得 ………………………………(3分)

  因为,故集合应分为两种情况

(1)时,  …………………………………(6分)

(2)时,  ……………………………………(8分)

所以     …………………………………………………(9分)

假,则…………………………………………………………(10分)

真,则  ……………………………………………………………(11分)

故实数的取值范围为………………………………………(12分)

17.解:(1)由1的解集有且只有一个元素知

        ………………………………………(2分)

时,函数上递增,此时不满足条件2

综上可知  …………………………………………(3分)

 ……………………………………(6分)

(2)由条件可知……………………………………(7分)

时,令

所以……………………………………………………………(9分)

时,也有……………………………(11分)

综上可得数列的变号数为3……………………………………………(12分)

18.解:(1)当时,………………………(1分)

 当时,……………………(2分)

,知又是周期为4的函数,所以

…………………………(4分)

…………………………(6分)

故当时,函数的解析式为

………………………………(7分)

(2)当时,由,得

解上述两个不等式组得…………………………………………(10分)

的解集为…………………(12分)

19.解:(1)当时,……………………(2分)

时,

综上,日盈利额(万元)与日产量(万件)的函数关系为:

…………………………………………………………(4分)

(2)由(1)知,当时,每天的盈利额为0……………………………(6分)

        当时,

当且仅当时取等号

所以时,,此时……………………………(8分)

            时,由

函数上递增,,此时……(10分)

综上,若,则当日产量为3万件时,可获得最大利润

        若,则当日产量为万件时,可获得最大利润…………(12分)

20.解:(1)将点代入

       因为直线,所以……………………………………(3分)

       (2)

为偶数时,为奇数,……………(5分)

为奇数时,为偶数,(舍去)

综上,存在唯一的符合条件…………………………………………………(7分)

(3)证明不等式即证明

     成立,下面用数学归纳法证明

1当时,不等式左边=,原不等式显然成立………………………(8分)

2假设时,原不等式成立,即

    当

     =

,即时,原不等式也成立 ………………(11分)

根据12所得,原不等式对一切自然数都成立 ……………………………(13分)

21.解:(1)由……………………(1分)

     

     又的定义域为,所以

时,

时,为减函数

时,为增函数………………………(5分)

   所以当时,的单调递增区间为

                         单调递减区间为…………………(6分)

(2)由(1)知当时,递增无极值………(7分)

所以处有极值,故

     因为,所以上单调

     当为增区间时,恒成立,则有

    ………………………………………(9分)

为减区间时,恒成立,则有

无解  ……………………(13分)

由上讨论得实数的取值范围为 …………………………(14分)

 

 

 


同步练习册答案