已知函数.是方程的两个根.是的导数.设.. 查看更多

 

题目列表(包括答案和解析)

已知函数是方程的两个根的导数.设

(1)求的值;

(2)已知对任意的正整数,记.求数列的前 项和

查看答案和解析>>

已知函数是方程的两个根的导数.设
(1)求的值;
(2)已知对任意的正整数,记.求数列的前 项和

查看答案和解析>>

已知函数是方程的两个实根,其中,则实数的大小关系是(     )

A. B.
C. D.

查看答案和解析>>

(08年哈六理)已知函数是方程的两个根的导数,设 (

(1)求的值;

(2)证明:对任意的正整数,都有

(3)记 (),求数列的前项和

查看答案和解析>>

(08年哈六中文)已知函数是方程的两个根的导数,设 (

(1)求的值;

(2)记 (),求数列的前项和

查看答案和解析>>

一、选择题:

1、A 2、B 3、A 4、D 5、D  6、C7、A 8、C9、A10、C 11、A 12、B

二、填空题:

13、 {1,2,3}   14、 充分而不必要条件 15、 2 16、   17、 48    

18、 4  19、      20、 21、4  22、 

23、   24、  25、 26、①② 

三、解答题:

27解:由题设,当时,

由题设条件可得

(2)由(1)当

这时数列=

这时数列    ①

上式两边同乘以,得

      ②

①―②得

=

所以

28解:(1)因BC∥B1C1

且B1C1平面MNB1,  BC平面MNB1

故BC∥平面MNB1.   

(2)因BC⊥AC,且ABC-A1B1C1为直三棱柱, 

故BC⊥平面ACC1A1

因BC平面A1CB, 

故平面A1CB⊥平面ACC1A1

29解:延长

-10

故当时,S的最小值为,当 时 S 的

30解:

∴圆心

(2)由直线

∴设

将直线代人圆方程

由韦达定理得

解得

∴所求直线方程为

31解:(1)当a=1时,,其定义域是

       

,即,解得

舍去.

时,;当时,

∴函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减

∴当x=1时,函数取得最大值,其值为

时,,即

∴函数只有一个零点.  

(2)法一:因为其定义域为

所以

①当a=0时,在区间上为增函数,不合题意

②当a>0时,等价于,即

此时的单调递减区间为

依题意,得解之得.         

③当a<0时,等价于,即?

此时的单调递减区间为

综上,实数a的取值范围是                  

法二:

                               

在区间上是减函数,可得

在区间上恒成立.

① 当时,不合题意                                

② 当时,可得

                     

32解:(1)  由    得

      

(2)        

     又 

数列是一个首项为 ,公比为2的等比数列;

 

 

 


同步练习册答案