13. 14. 15.72 16.①④⑤ 查看更多

 

题目列表(包括答案和解析)

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10
数学成绩 95 75 80 94 92 65 67 84 98 71
物理成绩 90 63 72 87 91 71 58 82 93 81
序号 11 12 13 14 15 16 17 18 19 20
数学成绩 67 93 64 78 77 90 57 83 72 83
物理成绩 77 82 48 85 69 91 61 84 78 86
若数学成绩90分以上为优秀,物理成绩85分(含85分)以上为优秀.
(Ⅰ)根据上表完成下面的2×2列联表:
数学成绩优秀 数学成绩不优秀 合计
物理成绩优秀
物理成绩不优秀 12
合计 20
(Ⅱ)根据题(1)中表格的数据计算,有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:抽到12号的概率的概率.
参考数据公式:①独立性检验临界值表
P(K2≥x0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
x0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
②独立性检验随机变量K2值的计算公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

某学校的课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩如下表所示:若单科成绩在85分以上(含85分),则该科成绩为优秀.
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
(1)根据上表完成下面的2×2列联表(单位:人)
数学成绩优秀 数学成绩不优秀 总计
物理成绩优秀
物理成绩不优秀
总计 20
(2)根据(1)中表格的数据计算,是否有99%的把握,认为学生的数学成绩与物理之间有关系?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.100 0.050 0.025 0.010 0.001
k 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

某学校的课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩如下表所示:若单科成绩在85分以上(含85分),则该科成绩为优秀.
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
(1)根据上表完成下面的2×2列联表(单位:人)
数学成绩优秀 数学成绩不优秀 总计
物理成绩优秀
物理成绩不优秀
总计 20
(2)根据(1)中表格的数据计算,是否有99%的把握,认为学生的数学成绩与物理之间有关系?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.100 0.050 0.025 0.010 0.001
k 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

某研究性学习小组研究函数f(x)=ax3+bx(a≠0,a,b为常数)的 性质:
(Ⅰ)甲同学得到如下表所示的部分自变量x及其对应函数值y的近似值(精确到0.01):
x -1 -0.72 -0.44 -0.16 0.12 0.4
y的近似值 4.00 1.15 0.02 -0.14 0.11 0.08
请你根据上述表格中的数据回答下列问题:
(i)函数f(x)在区间(0.4,0.44)内是否存在零点,写出你的判断并加以证明;
(ii)证明:函数f(x)在区间(-∞,-0.3)上单调递减;
(Ⅱ)乙同学发现对于函数f(x)图象上的两点A(-1,4),B(t,f(t))(-1<t<2),存在m∈(-1,t),使f'(m)的值恰为直线AB的斜率,请你判断乙同学的结论是否正确?若正确,请给出证明并确定m的个数,若不正确,请说明理由.

查看答案和解析>>

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀   合   计
物理成绩优秀
物理成绩不优秀
合   计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>


同步练习册答案