题目列表(包括答案和解析)
1 |
4 |
如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B—PD—C的正切值。
【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二问中解:取PD的中点E,连接CE、BE,
为正三角形,
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,
∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。
定义:如果函数在区间上存在,满足,则称是函数在区间上的一个均值点。已知函数在区间上存在均值点,则实数的取值范围是 .
15 (1)如图,在中,⊙过
两点且与相切于点,与交于点,连结,
若,则
(2)过点的直线的参数方程为,若此直线与直线相较于点,则
(3)若关于的不等式无解,则实数的取值范围为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com