题目列表(包括答案和解析)
已知是等差数列,其前n项和为Sn,是等比数列,且,.
(Ⅰ)求数列与的通项公式;
(Ⅱ)记,,证明().
【解析】(1)设等差数列的公差为d,等比数列的公比为q.
由,得,,.
由条件,得方程组,解得
所以,,.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:数学归纳法)
① 当n=1时,,,故等式成立.
② 假设当n=k时等式成立,即,则当n=k+1时,有:
即,因此n=k+1时等式也成立
由①和②,可知对任意,成立.
若满足约束条件,则的最小值为____________.
【解析】做出做出不等式所表示的区域如图,由得,平移直线,由图象可知当直线经过点时,直线的截距最 大,此时最小,最小值为.
若x,y满足约束条件则z=3x-y的最小值为_________.
【解析】做出做出不等式所表示的区域如图,由得,平移直线,由图象可知当直线经过点时,直线的截距最 大,此时最小,最小值为.
b | 2n |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com