题目列表(包括答案和解析)
设,为常数).当时,,且为上的奇函数.
(Ⅰ)若,且的最小值为,求的表达式;w.w.w.k.s.5.u.c.o.m
(Ⅱ)在(Ⅰ)的条件下,在上是单调函数,求的取值范围.
2 | 3 |
3 |
π |
3 |
5π |
12 |
m |
n |
12 |
5 |
m |
n |
π |
4 |
(本题满分12分)探究函数,的最小值,并确定取得最小值时的值,列表如下:
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
|
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
请观察表中值随值变化的特点,完成下列问题:
(1) 当时,在区间上递减,在区间 上递增;
所以,= 时, 取到最小值为 ;
(2) 由此可推断,当时,有最 值为 ,此时= ;
(3) 证明: 函数在区间上递减;
(4) 若方程在内有两个不相等的实数根,求实数的取值范围。
已知:,().
(1)求的单调递增区间;
(2)若时,的最小值为5,求的值.
一、选择题:
1.B 2.D 3.A 4.A 5.A 6.B 7.B 8.B 9.C 10.C
二、填空题:
11. 12. 13. 14. 15. 16. 17. 18. 19. 20.1)、5) 21. 22. 23.3)4) 24.3
三、解答题:
25解:(Ⅰ) ……2分
.
的最小正周期是.
(Ⅱ) ∵,
∴.
∴当即时,函数取得最小值是.
∵,
∴.
26解:(1)∵,∴,即.
∴.
由,得或;
由,得.因此,
函数的单调增区间为,;单调减区间为.
在取得极大值为;在取得极小值为.
由∵, 且
∴在[-,1]上的的最大值为,最小值为.
(2) ∵,∴.
∵函数的图象上有与轴平行的切线,∴有实数解.
∴,∴,即 .
因此,所求实数的取值范围是.
27解:(1)在中,,
而PD垂直底面ABCD,
,
在中,,即为以为直角的直角三角形。
设点到面的距离为,
由有,
即 ,
;
(2),而,
即,,,是直角三角形;
(3)时,,
即,
的面积
28解:(I)因为,成立,所以:,
由: ,得 ,
由:,得
解之得: 从而,函数解析式为:
(2)由于,,设:任意两数 是函数图像上两点的横坐标,则这两点的切线的斜率分别是:
又因为:,所以,,得:
知:
故,当 是函数图像上任意两点的切线不可能垂直
29解:(1)∵ ∴
两式相减得: ∴
又时, ∴
∴是首项为,公比为的等比数列
∴
(2)
以上各式相加得:
30解:(1)
(2)由
由
,
由此得
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com