是函数图象上三点,且. 查看更多

 

题目列表(包括答案和解析)

精英家教网函数y=f(x)是定义在R上的偶函数,且f(-1+x)=f(-1-x),当x∈[-2,-1]时,f(x)=t(x+2)3-t(x+2)(t∈R),记函数y=f(x)的图象在(
1
2
,f(
1
2
))处的切线为l,f′(
1
2
)=1.
(Ⅰ)求y=f(x)在[0,1]上的解析式;
(Ⅱ)点列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次为x轴上的点,如图,当n∈N*时,点An,Bn,An+1构成以AnAn+1为底边的等腰三角形.若x1=a(0<a<1),求数列{xn}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a使得数列{xn}是等差数列?如果存在,写出a的一个值;如果不存在,请说明理由.

查看答案和解析>>

函数y=f(x)是定义在R上的偶函数,当x∈[-1,0]时,f(x)=-tx3+tx,记函数f(x)的图象在x=处的切线为l,f′()=1.

    (Ⅰ)当x∈[0,1]时,求函数f(x)的解析式;

    (Ⅱ)求切线l的方程;

    (Ⅲ)点列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次为x轴上的点,如图,当n∈N*,点An、Bn、An+1构成以AnAn+1为底边的等腰三角形.若x1=a(0<a<1),且数列{xn}是等差数列,求a的值和数列{xn}的通项公式.

查看答案和解析>>

已知函数图象的对称中心为的极小值为.

(1)求的解析式;

(2)设,若有三个零点,求实数的取值范围;

(3)是否存在实数,当时,使函数

在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.

查看答案和解析>>

函数y=f(x)是定义在R上的偶函数,且f(-1+x)=f(-1-x),当x∈[-2,-1]时,f(x)=t(x+2)3-t(x+2)(t∈R),记函数y=f(x)的图象在处的切线为l,
(Ⅰ)求y=f(x)在[0,1]上的解析式;
(Ⅱ)点列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次为x轴上的点,如图,当n∈N*时,点An,Bn,An+1构成以AnAn+1为底边的等腰三角形.若x1=a(0<a<1),求数列{xn}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a使得数列{xn}是等差数列?如果存在,写出a的一个值;如果不存在,请说明理由.

查看答案和解析>>

若函数f(x)=|sinx|的图象与直线y=kx仅有三个公共点,且其横坐标分别为α,β,γ(α<β<γ),给出下列结论:①k=-cosγ;②γ∈(π,
2
)
;③γ=tanγ;④sin2γ=
1+γ2
其中正确的是
③④
③④
(填上所有正确的序号)

查看答案和解析>>

一、选择题:

1.D  2.D 3.D  4.C  5.A 6.D 7.B  8.C 9.B 10.B  11.D 12.D

二、填空题:

13、    14、  15、对任意使   16、2    17、

18、    19、   20、8      21、     22、40    23、   

24、4       25、    26、

三、解答题:

27解:(1)由,得

于是

,即

(2)∵角是一个三角形的最小内角,∴0<,,

,则(当且仅当时取=),

故函数的值域为

28证明:(1)同理,

又∵       ∴平面. 

(2)由(1)有平面

又∵平面,    ∴平面平面

(3)连接AG并延长交CD于H,连接EH,则

在AE上取点F使得,则,易知GF平面CDE.

29解:(1),                     

,                         

。   

(2)∵

∴当且仅当,即时,有最大值。

,∴取时,(元),

此时,(元)。答:第3天或第17天销售收入最高,

此时应将单价定为7元为好

30解:(1)设M

∵点M在MA上∴  ①

同理可得

由①②知AB的方程为

易知右焦点F()满足③式,故AB恒过椭圆C的右焦点F(

(2)把AB的方程

又M到AB的距离

∴△ABM的面积

31解:(Ⅰ)  

所以函数上是单调减函数.

(Ⅱ) 证明:据题意x1<x2<x3,

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=

即ㄓ是钝角三角形

(Ⅲ)假设ㄓ为等腰三角形,则只能是

 

  ①         

而事实上,    ②

由于,故(2)式等号不成立.这与式矛盾. 所以ㄓ不可能为等腰三角形.

32解:(Ⅰ)

    

故数列为等比数列,公比为3.           

(Ⅱ)

                 

所以数列是以为首项,公差为 loga3的等差数列.

                           

=1+3,且

                           

    

(Ⅲ)

      

假设第项后有

      即第项后,于是原命题等价于

      

  故数列项起满足.    

 


同步练习册答案