题目列表(包括答案和解析)
(本小题满分14分)已知递增数列满足:, ,且、、成等比数列。(I)求数列的通项公式;(II)若数列满足: ,且。①证明数列是等比数列,并求数列的通项公式;②设,数列前项和为, ,。当时,试比较A与B的大小。
(本小题满分14分)已知递增数列满足:, ,且、、成等比数列。(I)求数列的通项公式;(II)若数列满足: ,且。①证明数列是等比数列,并求数列的通项公式;②设,数列前项和为, ,。当时,试比较A与B的大小。
(本小题满分14分)
在数列和中,已知,其中且。
(I)若,求数列的前n项和;
(II)证明:当时,数列中的任意三项都不能构成等比数列;
(III)设集合,试问在区间[1,a]上是否存在实数b使得,若存在,求出b的一切可能的取值及相应的集合C;若不存在,说明理由。
(本小题满分14分)
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,.
(Ⅰ) 若点是的中点,求证:平面;
(II)试问点在线段上什么位置时,二面角的余弦值为.
(本小题满分12分)
设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素具有下面的性质:若 的定义域为D,则对于任意成立。试用这一性质证明:方程只有一个实数根;
(III)对于M中的函数 的实数根,求证:对于定义域中任意的当且
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com