题目列表(包括答案和解析)
已知且方程无实数根,下列命题:
方程也一定没有实数根;
若;则不等式对一切都成立;
③若则必存在实数,使;
④若则不等式对一切都成立.
其中正确命题的序号是__________.(把你认为正确命题的所有序号都填上)
已知且方程无实数根,下列命题:
方程也一定没有实数根;
若;则不等式对一切都成立;
③若则必存在实数,使;
④若则不等式对一切都成立.
其中正确命题的序号是__________.(把你认为正确命题的所有序号都填上)
已知,且方程无实数根,下列命题:
①方程也一定没有实数根;
②若,则不等式对一切实数都成立;
③若,则必存在实数,使
④若,则不等式对一切实数都成立.
其中正确命题的序号是 .
已知函数且方程无实数根,下列命题:
①方程也一定没有实数根;
②若,则必存在实数,使;
③若,则不等式对一切实数都成立;
④若则不等式对一切实数都成立;
以上说法中正确的是: 。(把你认为正确的命题的所有序号都填上)。
8.已知则方程的实数根的个数是( )
A.0 B.1 C.2 D.3
天津精通高考复读学校数学教研组组长 么世涛
一、选择题 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替得
4.
5.,或
6.
7.略
8.
二、填空题:9.60; 10. 15:10:20 ; 11.; 12.;
13.0.74 ; 14. ①、;②、圆;③.
提示: 9.
10.,,
11.,
12.,,,
,
13.
14.略
三、解答题
15. 解:(1).
(2)设抽取件产品作检验,则,
,得:,即
故至少应抽取8件产品才能满足题意.
16. 解:由题意得,,原式可化为,
而
,
故原式=.
17. 解:(1)显然,连接,∵,,
∴.由已知,∴,.
∵∽, ,
∴ 即 .
∴.
(2)
当且仅当时,等号成立.此时,即为的中点.于是由,知平面,是其交线,则过作
。
∴就是与平面所成的角.由已知得,,
∴, , .
(3) 设三棱锥的内切球半径为,则
∵,,,,,
∴.
18. 解: (1) ,
(2) ∵ ,
∴当时,
∴当时,,
∵,,,.
∴ 的最大值为或中的最大者.
∵
∴ 当时,有最大值为.
19.(1)解:∵函数的图象过原点,
∴即,
∴.
又函数的图象关于点成中心对称,
∴, .
(2)解:由题意有 即,
即,即.
∴数列{}是以1为首项,1为公差的等差数列.
∴,即. ∴.
∴ ,,,.
(3)证明:当时,
故
20. (1)解:∵,又,
∴. 又∵
,且
∴ .
(2)解:由,,猜想
(3)证明:用数学归纳法证明:
①当时,,猜想正确;
②假设时,猜想正确,即
1°若为正奇数,则为正偶数,为正整数,
2°若为正偶数,则为正整数,
,又,且
所以
即当时,猜想也正确
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即,也就是 ,
4.先确定是哪两个人的编号与座位号一致,有种情况,如编号为1的人坐1号座位,且编号为2的人坐2号座位有以下情形:
|