C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

一、选择题:DDBD   CCBA

二、填空题:9、  10、-2    11、1    12、11   

13、解析:    14、

15、解:(Ⅰ)时,f(x)>1

令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1

∴f(0)=1

若x>0,则f(x-x)=f(0)=f(x)f(-x)故

故x∈R   f(x)>0

任取x1<x2   

故f(x)在R上减函数

(Ⅱ)①  由f(x)单调性

 an+1=an+2  故{an}等差数列    

   是递增数列

 当n≥2时,

 

而a>1,∴x>1

故x的取值范围(1,+∞)

16、解:(I)

(舍去)

单调递增;

单调递减. 

上的极大值 

   (II)由

, …………① 

依题意知上恒成立,

 上单增,要使不等式①成立,

当且仅当 

   (III)由

上递增;

上递减 

恰有两个不同实根等价于

        

17、解:(Ⅰ)由题可得

所以曲线在点处的切线方程是:

,得.即.显然,∴

(Ⅱ)由,知,同理

   故

从而,即.所以,数列成等比数列.

.即

从而所以

(Ⅲ)由(Ⅱ)知

时,显然

时,

   综上,

18、解:(I)

(舍去)

单调递增;

单调递减.  

上的极大值  

   (II)由

, …………①  

依题意知上恒成立,

 上单增,要使不等式①成立,

当且仅当

   (III)由

上递增;

上递减  

恰有两个不同实根等价于

  

 


同步练习册答案