题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线,
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数和,不等式恒成立,试求实数的取值范围.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B错;+==≥4,故A错;由基本不等式得≤=,即+≤,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D错.故选C.
.定义域为R的函数满足,且当时,,则当时,的最小值为( )
(A) (B) (C) (D)
.过点作圆的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
一、选择题:DDBD CCBA
二、填空题:9、 10、-2 11、1 12、11
13、解析: 14、
15、解:(Ⅰ)时,f(x)>1
令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1
∴f(0)=1
若x>0,则f(x-x)=f(0)=f(x)f(-x)故
故x∈R f(x)>0
任取x1<x2
故f(x)在R上减函数
(Ⅱ)① 由f(x)单调性
an+1=an+2 故{an}等差数列
②
是递增数列
当n≥2时,
即
而a>1,∴x>1
故x的取值范围(1,+∞)
16、解:(I),
令(舍去)
单调递增;
当单调递减.
上的极大值
(II)由得
, …………①
设,
,
依题意知上恒成立,
,
,
上单增,要使不等式①成立,
当且仅当
(III)由
令,
当上递增;
当上递减
而,
恰有两个不同实根等价于
17、解:(Ⅰ)由题可得.
所以曲线在点处的切线方程是:.
即.
令,得.即.显然,∴.
(Ⅱ)由,知,同理.
故.
从而,即.所以,数列成等比数列.
故.即.
从而所以
(Ⅲ)由(Ⅱ)知,
∴∴
当时,显然.
当时,
∴.
综上,.
18、解:(I),
令(舍去)
单调递增;
当单调递减.
上的极大值
(II)由得
, …………①
设,
,
依题意知上恒成立,
,
,
上单增,要使不等式①成立,
当且仅当
(III)由
令,
当上递增;
当上递减
而,
恰有两个不同实根等价于
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com