(Ⅲ) 若x1=4.bn=xn-2.Tn是数列{bn}的前n项和.证明Tn<3. 查看更多

 

题目列表(包括答案和解析)

已知函数fx)=x2-4,设曲线yfx)在点(xnfxn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数.  

 (Ⅰ)用表示xn+1

(Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式;

(Ⅲ)若x1=4,bnxn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数.
(1)用xn表示xn+1
(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数.
(1)用xn表示xn+1
(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

已知函数fx)=x2-4,设曲线yfx)在点(xnfxn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数.  
(Ⅰ)用表示xn+1
(Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bnxn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

已知函数fx)=x2-4,设曲线yfx)在点(xnfxn))处的切线与x轴的交点为(xn+1,0)(nN *),其中x1为正实数.

(Ⅰ)用xn表示xn+1

(Ⅱ)若x1=4,记a4 =lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;

(Ⅲ)若x1=4,bnxn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

一、选择题:DDBD   CCBA

二、填空题:9、  10、-2    11、1    12、11   

13、解析:    14、

15、解:(Ⅰ)时,f(x)>1

令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1

∴f(0)=1

若x>0,则f(x-x)=f(0)=f(x)f(-x)故

故x∈R   f(x)>0

任取x1<x2   

故f(x)在R上减函数

(Ⅱ)①  由f(x)单调性

 an+1=an+2  故{an}等差数列    

   是递增数列

 当n≥2时,

 

而a>1,∴x>1

故x的取值范围(1,+∞)

16、解:(I)

(舍去)

单调递增;

单调递减. 

上的极大值 

   (II)由

, …………① 

依题意知上恒成立,

 上单增,要使不等式①成立,

当且仅当 

   (III)由

上递增;

上递减 

恰有两个不同实根等价于

        

17、解:(Ⅰ)由题可得

所以曲线在点处的切线方程是:

,得.即.显然,∴

(Ⅱ)由,知,同理

   故

从而,即.所以,数列成等比数列.

.即

从而所以

(Ⅲ)由(Ⅱ)知

时,显然

时,

   综上,

18、解:(I)

(舍去)

单调递增;

单调递减.  

上的极大值  

   (II)由

, …………①  

依题意知上恒成立,

 上单增,要使不等式①成立,

当且仅当

   (III)由

上递增;

上递减  

恰有两个不同实根等价于

  

 


同步练习册答案