9.过抛物线的焦点F的一条直线交抛物线于P.Q两点.若线段PF和FQ的长分别是p.q.则等于 ( ) 查看更多

 

题目列表(包括答案和解析)

直线l过抛物线 (a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=               

 

查看答案和解析>>

已知抛物线y2=8x的准线过双曲线-=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为        .

 

查看答案和解析>>

过抛物线=2py(p>0)的焦点F作倾斜角的直线,与抛物线交于A、B两点(点A在y轴左侧),则的值是___________.

查看答案和解析>>

证明:过抛物线y=a(x-x1)•(x-x2)(a≠0,x1<x2)上两点A(x1,0)、B(x2,0)的切线,与x轴所成的锐角相等.

查看答案和解析>>

直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a的值为___________.

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

D

A

A

D

B

C

C

B

C

D

二、填空题

11.     cosx+sinx          _                   12.

13._____  -1____________                    14.

15.                   16.

17.

三、解答题

18.解:由椭圆的标准方程知椭圆的焦点为,离心率为………………3分

因为双曲线与椭圆有相同的焦点,所以,双曲线焦点在x轴上,c=4,………………2分

又双曲线与椭圆的离心率之和为,故双曲线的离心率为2,所以a=2………………4分

又b2=c2-a2=16-4=12。………………………………………………………………………2分

所以双曲线的标准方程为。………………………………………………1分

19.解:p真:m<0…………………………………………………………………………2分

q真:……………………………………………………………2分

故-1<m<1。…………………………………………………………………………………2分

都是假命题知:p真q假,………………………………………………4分

。………………………………4分

20.解:(1)设|PF2|=x,则|PF1|=2a-x……………………………………………………2分

,∴, ∴…………1分

,……………………………………………………………………2分

………………………………2分

(2)由题知a=4,,故………………………………………………1分

,…………………………………………………………………1分

……………………………………2分

,代入椭圆方程得,………………………………………2分

故Q点的坐标为

…………………………………………………………………………………………………2分

21.解:(1)由函数,求导数得,…1分

由题知点P在切线上,故f(1)=4,…………………………………………………………1分

又切点在曲线上,故1+a+b+c=4①…………………………………………………………1分

,故3+2a+b=3②………………………………………………………………1分

③……………………2分

……………………1分

(2)…………………………1分

x

-2

+

0

0

+

极大值

极小值

有表格或者分析说明…………………………………………………………………………3分

,…………………………………………………………2分

∴f(x)在[-3,1]上最大值为13。故m的取值范围为{m|m>13}………………………2分

22.解:(1)由题意设过点M的切线方程为:,…………………………1分

代入C得,则,………………2分

,即M(-1,).………………………………………2分

另解:由题意得过点M的切线方程的斜率k=2,…………………………………………1分

设M(x0y0),,………………………………………………………………1分

由导数的几何意义可知2x0+4=2,故x0= -1,……………………………………………2分

代入抛物线可得y0=,点M的坐标为(-1,)……………………………………1分

(2)假设在C上存在点满足条件.设过Q的切线方程为:,代入

.………………………………………………………2分

时,由于,…………………2分

当a>0时,有

或  ;……………………………………2分

当a≤0时,∵k≠0,故 k无解。……………………………………………………1分

若k=0时,显然也满足要求.…………………………………………1分

综上,当a>0时,有三个点(-2+),(-2-)及(-2,-),且过这三点的法线过点P(-2,a),其方程分别为:

x+2y+2-2a=0,x-2y+2+2a=0,x=-2。

当a≤0时,在C上有一个点(-2,-),在这点的法线过点P(-2,a),其方程为:x=-2。……………………………………………………………………………………3分

 

 

 

 

 


同步练习册答案