13.已知函数在点处有极值.则a= . 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;
(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x0,y0)(其中x0∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当x0=
x1+x2
2
时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.

查看答案和解析>>

12、已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为
(0,2)

查看答案和解析>>

9、已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为(  )

查看答案和解析>>

已知函数f(x)=x3-3ax-1,a≠0.若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,则m的取值范围是
(-3,1)
(-3,1)

查看答案和解析>>

已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点为
x4
x4
.(写出所有你认为取得极小值处的点的横坐标,若有多个用逗号隔开)

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

D

A

A

D

B

C

C

B

C

D

二、填空题

11.     cosx+sinx          _                   12.

13._____  -1____________                    14.

15.                   16.

17.

三、解答题

18.解:由椭圆的标准方程知椭圆的焦点为,离心率为………………3分

因为双曲线与椭圆有相同的焦点,所以,双曲线焦点在x轴上,c=4,………………2分

又双曲线与椭圆的离心率之和为,故双曲线的离心率为2,所以a=2………………4分

又b2=c2-a2=16-4=12。………………………………………………………………………2分

所以双曲线的标准方程为。………………………………………………1分

19.解:p真:m<0…………………………………………………………………………2分

q真:……………………………………………………………2分

故-1<m<1。…………………………………………………………………………………2分

都是假命题知:p真q假,………………………………………………4分

。………………………………4分

20.解:(1)设|PF2|=x,则|PF1|=2a-x……………………………………………………2分

,∴, ∴…………1分

,……………………………………………………………………2分

………………………………2分

(2)由题知a=4,,故………………………………………………1分

,…………………………………………………………………1分

……………………………………2分

,代入椭圆方程得,………………………………………2分

故Q点的坐标为

…………………………………………………………………………………………………2分

21.解:(1)由函数,求导数得,…1分

由题知点P在切线上,故f(1)=4,…………………………………………………………1分

又切点在曲线上,故1+a+b+c=4①…………………………………………………………1分

,故3+2a+b=3②………………………………………………………………1分

③……………………2分

……………………1分

(2)…………………………1分

x

-2

+

0

0

+

极大值

极小值

有表格或者分析说明…………………………………………………………………………3分

,…………………………………………………………2分

∴f(x)在[-3,1]上最大值为13。故m的取值范围为{m|m>13}………………………2分

22.解:(1)由题意设过点M的切线方程为:,…………………………1分

代入C得,则,………………2分

,即M(-1,).………………………………………2分

另解:由题意得过点M的切线方程的斜率k=2,…………………………………………1分

设M(x0y0),,………………………………………………………………1分

由导数的几何意义可知2x0+4=2,故x0= -1,……………………………………………2分

代入抛物线可得y0=,点M的坐标为(-1,)……………………………………1分

(2)假设在C上存在点满足条件.设过Q的切线方程为:,代入

.………………………………………………………2分

时,由于,…………………2分

当a>0时,有

或  ;……………………………………2分

当a≤0时,∵k≠0,故 k无解。……………………………………………………1分

若k=0时,显然也满足要求.…………………………………………1分

综上,当a>0时,有三个点(-2+),(-2-)及(-2,-),且过这三点的法线过点P(-2,a),其方程分别为:

x+2y+2-2a=0,x-2y+2+2a=0,x=-2。

当a≤0时,在C上有一个点(-2,-),在这点的法线过点P(-2,a),其方程为:x=-2。……………………………………………………………………………………3分

 

 

 

 

 


同步练习册答案