查看更多

 

题目列表(包括答案和解析)

(本小题满分15分)

已知函数,其中 (),若相邻两对称轴间的距离不小于

   (Ⅰ)求的取值范围;

   (Ⅱ)在中,分别是角的对边,,当最大时,,求的面积.

查看答案和解析>>

(本小题满分15分)

某旅游商品生产企业,2009年某商品生产的投入成本为1元/件,

出厂价为流程图的输出结果元/件,年销售量为10000件,

因2010年国家长假的调整,此企业为适应市场需求,

计划提高产品档次,适度增加投入成本.若每件投入成本增加的

比例为),则出厂价相应提高的比例为

同时预计销售量增加的比例为

已知得利润(出厂价投入成本)年销售量.

(Ⅰ)写出2010年预计的年利润

与投入成本增加的比例的关系式;

(Ⅱ)为使2010年的年利润比2009年有所增加,

问:投入成本增加的比例应在什么范围内?

查看答案和解析>>

(本小题满分15分)某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站. 记P到三个村庄的距离之和为y.

(1)设,把y表示成的函数关系式;

(2)变电站建于何处时,它到三个小区的距离之和最小?

查看答案和解析>>

(本小题满分15分)如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;

(2)证明:直线PQ与圆O相切.

查看答案和解析>>

(本小题满分15分)已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2S1Sm(m∈N*)的等比中项,求正整数m的值.

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

D

A

A

D

B

C

C

B

C

D

二、填空题

11.     cosx+sinx          _                   12.

13._____  -1____________                    14.

15.                   16.

17.

三、解答题

18.解:由椭圆的标准方程知椭圆的焦点为,离心率为………………3分

因为双曲线与椭圆有相同的焦点,所以,双曲线焦点在x轴上,c=4,………………2分

又双曲线与椭圆的离心率之和为,故双曲线的离心率为2,所以a=2………………4分

又b2=c2-a2=16-4=12。………………………………………………………………………2分

所以双曲线的标准方程为。………………………………………………1分

19.解:p真:m<0…………………………………………………………………………2分

q真:……………………………………………………………2分

故-1<m<1。…………………………………………………………………………………2分

都是假命题知:p真q假,………………………………………………4分

。………………………………4分

20.解:(1)设|PF2|=x,则|PF1|=2a-x……………………………………………………2分

,∴, ∴…………1分

,……………………………………………………………………2分

………………………………2分

(2)由题知a=4,,故………………………………………………1分

,…………………………………………………………………1分

……………………………………2分

,代入椭圆方程得,………………………………………2分

故Q点的坐标为

…………………………………………………………………………………………………2分

21.解:(1)由函数,求导数得,…1分

由题知点P在切线上,故f(1)=4,…………………………………………………………1分

又切点在曲线上,故1+a+b+c=4①…………………………………………………………1分

,故3+2a+b=3②………………………………………………………………1分

③……………………2分

……………………1分

(2)…………………………1分

x

-2

+

0

0

+

极大值

极小值

有表格或者分析说明…………………………………………………………………………3分

,…………………………………………………………2分

∴f(x)在[-3,1]上最大值为13。故m的取值范围为{m|m>13}………………………2分

22.解:(1)由题意设过点M的切线方程为:,…………………………1分

代入C得,则,………………2分

,即M(-1,).………………………………………2分

另解:由题意得过点M的切线方程的斜率k=2,…………………………………………1分

设M(x0y0),,………………………………………………………………1分

由导数的几何意义可知2x0+4=2,故x0= -1,……………………………………………2分

代入抛物线可得y0=,点M的坐标为(-1,)……………………………………1分

(2)假设在C上存在点满足条件.设过Q的切线方程为:,代入

.………………………………………………………2分

时,由于,…………………2分

当a>0时,有

或  ;……………………………………2分

当a≤0时,∵k≠0,故 k无解。……………………………………………………1分

若k=0时,显然也满足要求.…………………………………………1分

综上,当a>0时,有三个点(-2+),(-2-)及(-2,-),且过这三点的法线过点P(-2,a),其方程分别为:

x+2y+2-2a=0,x-2y+2+2a=0,x=-2。

当a≤0时,在C上有一个点(-2,-),在这点的法线过点P(-2,a),其方程为:x=-2。……………………………………………………………………………………3分

 

 

 

 

 


同步练习册答案