解法一: (Ⅰ)由已知l2⊥MN, l2⊥l1 , MN∩l1 =M, 可得l2⊥平面ABN.由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又AN为AC在平面ABN内的射影. ∴AC⊥NB (Ⅱ)∵Rt△CAN≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连结BH,∠NBH为NB与平面ABC所成的角. 在Rt△NHB中,cos∠NBH= = = .解法二: 如图,建立空间直角坐标系M-xyz.令MN=1, 则有A,N,(Ⅰ)∵MN是 l1.l2的公垂线, l1⊥l2, ∴l2⊥平面ABN. l2平行于z轴. 故可设C, =+0=0 ∴AC⊥NB. 查看更多

 

题目列表(包括答案和解析)

已知圆心为C的圆经过点A(-3,0)和点B(1,0)两点,且圆心C在直线y=x+1上.
(1)求圆C的标准方程.
(2)已知线段MN的端点M的坐标(3,4),另一端点N在圆C上运动,求线段MN的中点G的轨迹方程;
(3)是否存在斜率为1的直线l,使l被圆C截得的弦PQ,且以PQ为直径的圆经过坐标原点?若存在求出直线l的方程,若不存在说明理由.

查看答案和解析>>

精英家教网某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到第几月末公司累积利润可达到30万元;
(3)求第八个月该公司所获利润是多少万元?

查看答案和解析>>

研究问题:“已知关于x的不等式ax2-bx+c>0,解集为(1,2),解关于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,设
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
参考上述解法,解决如下问题:已知关于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),则不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

学生李明解以下问题已知α,β,?均为锐角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,两式平方相加得2-2cos(α-β)=1
cos(α-β)=
1
2
又α,β均锐角
-
π
2
<α-β<
π
2

α-β=±
π
3

请判断上述解答是否正确?若不正确请予以指正.

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>


同步练习册答案