(1)是否存在实数为等比数列.若存在.求实数的值,若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

数列{an}满足a1=2,an+1=λan+2n(n∈N*),其中λ为常数.
(1)是否存在实数λ,使得数列{an}为等差数列或等比数列?若存在,求出其通项公式;若不存在,说明理由;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

数列{an}是以a为首项,q为公比的等比数列.令bn=1-a1-a2-…-an,cn=2-b1-b2-…-bn,n∈N*
(1)试用a、q表示bn和cn
(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;
(3)是否存在实数对(a,q),其中q≠1,使{cn}成等比数列.若存在,求出实数对(a,q)和{cn};若不存在,请说明理由.

查看答案和解析>>

数列{an}满足a1=2,an+1=(λ-3)an+2n,(n=1,2,3…)
(Ⅰ) 当a2=-1时,求λ及a3
(Ⅱ)是否存在实数λ,使得数列{an}为等差数列或等比数列?若存在,求出其通项公式,若不存在,说明理由.

查看答案和解析>>

数列{an}是以a为着项,q为公比的等比数列,令bn=1-a1-a2-a3-…-an,Cn=2-b1-b2-b3-…-bn.n∈N*
(1)试用a,q表示bn和cn
(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;
(3)是否存在实数对(a,q),其中q≠1,使{cn}成等比数列,若存在,求出实数对(a,q)和{cn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

数列{an}满足a1=2,an+1=λan+2n(n∈N*),其中λ为常数.
(1)是否存在实数λ,使得数列{an}为等差数列或等比数列?若存在,求出其通项公式;若不存在,说明理由;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

 

一、选择:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.证明:(1)由三视图可知,平面平面ABCD,

       设BC中点为E,连结AE、PE

      

      

       ,PB=PC

      

      

      

//

//

//

      

四边形CHFD为平行四边形,CH//DF

      

       又

       平面PBC

      

       ,DF平面PAD

       平面PAB

21.解:设

      

      

       对成立,

       依题有成立

       由于成立

          ①

       由于成立

         

       恒成立

          ②

       综上由①、②得

 

 

22.解:设列车从各站出发时邮政车厢内的邮袋数构成数列

   (1)

       在第k站出发时,前面放上的邮袋

       而从第二站起,每站放下的邮袋

       故

      

       即从第k站出发时,共有邮袋

   (2)

       当n为偶数时,

       当n为奇数时,

23.解:①

       上为增函数

       ②增函数

      

      

      

      

      

       同理可证

      

      

24.解:(1)假设存在满足题意

       则

      

       均成立

      

      

       成立

       满足题意

   (2)

      

      

      

      

       当n=1时,

      

       成立

       假设成立

       成立

       则

      

      

      

      

      

      

      

      

      

      

       即得成立

       综上,由数学归纳法可知

 

 

 


同步练习册答案