解:(1) 将条件变为:1-=.因此{1-}为一个等比数列.其首项为1-=.公比.从而1-=.据此得an=----1°(2) 证:据1°得.a1?a2?-an=为证a1?a2?--an<2?n!只要证nÎN*时有>----2°显然.左端每个因式都是正数.先证明.对每个nÎN*.有³1-()----3°用数学归纳法证明3°式:(i) n=1时.3°式显然成立.(ii) 设n=k时.3°式成立.即³1-()则当n=k+1时.³[1-=1-³1-(+)即当n=k+1时.3°式也成立.故对一切nÎN*.3°式都成立.利用3°得.³1-()=1-=1->故2°式成立.从而结论成立. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知函数f(x)是定义在[-5,5]上的偶函数,且f(x)在[0,5]上的图象如图所示,其中满足f(0)=0,f(5)=2,最高点为(2,5),
(1)试将函数f(x)在[-5,5]的图象补充完整;
(2)写出f(x)的单调区间(无需证明);
(3)若方程f(x)=m有两个解,写出所有满足条件的m值构成的集合M.

查看答案和解析>>

有一解三角形的题目,因纸张破损有一个条件丢失,具体如下:在△ABC中,已知a=
3
,2cos2
A+C
2
=(
2
-1
)cosB,
c=
6
+
2
2
c=
6
+
2
2
,求角A.经推断,破损处的条件为三角形的一边长度,且答案为A=60°.将条件补充完整填在空白处.

查看答案和解析>>

设点是抛物线的焦点,是抛物线上的个不同的点().

(1) 当时,试写出抛物线上的三个定点的坐标,从而使得

(2)当时,若

求证:

(3) 当时,某同学对(2)的逆命题,即:

“若,则.”

开展了研究并发现其为假命题.

请你就此从以下三个研究方向中任选一个开展研究:

① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);

② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);

③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).

【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.

【解析】第一问利用抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.

由抛物线定义得到

第二问设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

第三问中①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

解:(1)抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得

 

因为,所以

故可取满足条件.

(2)设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

   又因为

所以.

(3) ①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

.

是一个当时,该逆命题的一个反例.(反例不唯一)

② 设,分别过

抛物线的准线的垂线,垂足分别为

及抛物线的定义得

,即.

因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则

,所以.

(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)

③ 补充条件1:“点的纵坐标)满足 ”,即:

“当时,若,且点的纵坐标)满足,则”.此命题为真.事实上,设

分别过作抛物线准线的垂线,垂足分别为,由

及抛物线的定义得,即,则

又由,所以,故命题为真.

补充条件2:“点与点为偶数,关于轴对称”,即:

“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)

 

查看答案和解析>>

在△中,∠,∠,∠的对边分别是,且 .

(1)求∠的大小;(2)若,求的值.

【解析】第一问利用余弦定理得到

第二问

(2)  由条件可得 

将    代入  得  bc=2

解得   b=1,c=2  或  b=2,c=1  .

 

查看答案和解析>>

已知数列{an}满足以下两个条件:①点(an,an+1)在直线y=x+2上;②首项a1是方程3x2-4x+1=0的整数解.
(1)求数列{an}的通项公式;
(2)等比数列{bn}中,b1=a1,b2=a2,求数列{bn}的前n项和Tn

查看答案和解析>>


同步练习册答案