题目列表(包括答案和解析)
(本题满分12分)
设函数,,是的一个极大值点.
(Ⅰ)若,求的取值范围;
(Ⅱ) 当是给定的实常数,设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由.
(本题满分12分)
设函数,,是的一个极大值点.
(Ⅰ)若,求的取值范围;
(Ⅱ) 当是给定的实常数,设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由.
(本题满分12分)
设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式;
(2)试写出一个区间,使得当时,且数列是递增数列,并说明理由;
(3)已知,是否存在非零整数,使得对任意,都有
恒成立,若存在,求之;若不存在,说明理由.
(本题满分12分) 设函数(),.
(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;
(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3) 对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本题满分12分)
设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式;
(2)试写出一个区间,使得当时,且数列是递增数列,并说明理由;
(3)已知,是否存在非零整数,使得对任意,都有
恒成立,若存在,求之;若不存在,说明理由.
1―5 BCCCD 6―10 ACBBA 11―
13. 3 14. 15. 2 16.
17.解:(1)因为所以即
因为三角形ABC的外接圆半径为1,由正弦定理,得
于是即
因为所以故三角形ABC是直角三角形
因为,
所以,故
(2)
设则
因为故在上单调递减函数.
所以所以实数的取值范围是
18.解:(1)3名志愿者恰好连续3天参加社区服务工作的概率为
(2)随机变量的分布列为:
0
1
2
3
P
19.解:(1)正方形ABCD,
又二面角是直二面角
又ABEF是矩形,G是EF的中点,
又
而故平面
(2)由(1)知平面且交于GC,在平面BGC内作垂足为H,则
是BG与平面AGC所成的角.
在中,,
.
即BG与平面AGC所成的角为
(3)由(2)知作垂足为O,连接HO,则
为二面角的平面角
在ABG中,
在中,
在中,
20.解:(1)
①当时,故在上为减,
在上为增,在上为减.
②当时,故在上为减,
在上为增,在上为减.
(2)的取值范围是
21.解:设,与联立的
(Ⅰ)
(Ⅱ)(1)过点A的切线:
过点B的切线:
联立得点
所以点N在定直线上
(2)
联立:
可得
直线MN:在轴的截距为,
直线MN在轴上截距的取值范围是
22.解:(Ⅰ)
(1)时,时不等式成立
(2)假设时不等式成立,即
时不等式成立
由(1)(2)可知,对都有
(Ⅱ)(1)
是递减数列
(2)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com