题目列表(包括答案和解析)
已知,设
和
是方程
的两个根,不等式
对任意实数
恒成立;
函数
有两个不同的零点.求使“P且Q”为真命题的实数
的取值范围.
【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判别式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”为真命题,只需P真Q真即可。
解:由题设x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
当a∈[1,2]时,的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判别式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
综上,要使“P∧Q”为真命题,只需P真Q真,即
解得实数m的取值范围是(4,8]
已知函数,
.
(Ⅰ)若函数和函数
在区间
上均为增函数,求实数
的取值范围;
(Ⅱ)若方程有唯一解,求实数
的值.
【解析】第一问,
当0<x<2时,,当x>2时,
,
要使在(a,a+1)上递增,必须
如使在(a,a+1)上递增,必须
,即
由上得出,当时
,
在
上均为增函数
(Ⅱ)中方程有唯一解
有唯一解
设 (x>0)
随x变化如下表
x |
|
|
|
|
- |
|
+ |
|
|
极小值 |
|
由于在上,
只有一个极小值,
的最小值为-24-16ln2,
当m=-24-16ln2时,方程有唯一解得到结论。
(Ⅰ)解:
当0<x<2时,,当x>2时,
,
要使在(a,a+1)上递增,必须
如使在(a,a+1)上递增,必须
,即
由上得出,当时
,
在
上均为增函数 ……………6分
(Ⅱ)方程有唯一解
有唯一解
设 (x>0)
随x变化如下表
x |
|
|
|
|
- |
|
+ |
|
|
极小值 |
|
由于在上,
只有一个极小值,
的最小值为-24-16ln2,
当m=-24-16ln2时,方程有唯一解
已知,函数
(1)当时,求函数
在点(1,
)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有
对a分类讨论,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 当时,
又
∴ 函数在点(1,
)的切线方程为
--------4分
(Ⅱ)令 有
①
当即
时
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
极大值 |
|
极小值 |
|
故的极大值是
,极小值是
②
当即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述 时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设,
对求导,得
∵,
∴ 在区间
上为增函数,则
依题意,只需,即
解得 或
(舍去)
则正实数的取值范围是(
,
)
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当时,
,则
。
依题意得:,即
解得
第二问当时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,
,则
。
依题意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①当时,
,令
得
当变化时,
的变化情况如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
极小值 |
单调递增 |
极大值 |
|
又,
,
。∴
在
上的最大值为2.
②当时,
.当
时,
,
最大值为0;
当时,
在
上单调递增。∴
在
最大值为
。
综上,当时,即
时,
在区间
上的最大值为2;
当时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则
代入(*)式得:
即,而此方程无解,因此
。此时
,
代入(*)式得: 即
(**)
令
,则
∴在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com