解:(Ⅰ)∵椭圆中.. ----------- ∴, ----------- ∴椭圆的标准方程为. ----------- ∵在抛物线中.. ----------- ∴抛物线的标准方程为:. --------- (Ⅱ)设直线的方程为:. ----------- 则有 . 消去.整理得. -------- ∵直线和抛物线有两个交点. ∴ 解得:或 . ----------- 设. 则 -------- ∵=. ∴ --------- ∵. ∴即. 查看更多

 

题目列表(包括答案和解析)

设椭圆(常数)的左右焦点分别为是直线上的两个动点,

(1)若,求的值;

(2)求的最小值.

【解析】第一问中解:设

    由,得

  ② 

第二问易求椭圆的标准方程为:

所以,当且仅当时,取最小值

解:设 ……………………1分

,由     ①……2分

(1)由,得  ②   ……………1分

    ③    ………………………1分

由①、②、③三式,消去,并求得. ………………………3分

(2)解法一:易求椭圆的标准方程为:.………………2分

, ……4分

所以,当且仅当时,取最小值.…2分

解法二:, ………………4分

所以,当且仅当时,取最小值

 

查看答案和解析>>

已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。

【解析】解:因为第一问中,利用椭圆的性质由   所以椭圆方程可设为:,然后利用

    

      椭圆方程为

第二问中,当为钝角时,,    得

所以    得

解:(Ⅰ)由   所以椭圆方程可设为:

                                       3分

    

      椭圆方程为             3分

(Ⅱ)当为钝角时,,    得   3分

所以    得

 

查看答案和解析>>

在解析几何里,圆心在点(x0,y0),半径是r(r>0)的圆的标准方程是(x-x02+(y-y02=r2.类比圆的标准方程,研究对称轴平行于坐标轴的椭圆的标准方程,可以得出的正确结论是:“设椭圆的中心在点(x0,y0),焦点在直线y=y0上,长半轴长为a,短半轴长为b(a>b>0),其标准方程为
(x-x0)2
a2
+
(y-y0)2
b2
=1
(x-x0)2
a2
+
(y-y0)2
b2
=1

查看答案和解析>>

在解析几何里,圆心在点(x0,y0),半径是r(r>0)的圆的标准方程是(x-x02+(y-y02=r2.类比圆的标准方程,研究对称轴平行于坐标轴的椭圆的标准方程,可以得出的正确结论是:“设椭圆的中心在点(x0,y0),焦点在直线y=y0上,长半轴长为a,短半轴长为b(a>b>0),其标准方程为______.

查看答案和解析>>

在解析几何里,圆心在点(x,y),半径是r(r>0)的圆的标准方程是(x-x2+(y-y2=r2.类比圆的标准方程,研究对称轴平行于坐标轴的椭圆的标准方程,可以得出的正确结论是:“设椭圆的中心在点(x,y),焦点在直线y=y上,长半轴长为a,短半轴长为b(a>b>0),其标准方程为   

查看答案和解析>>


同步练习册答案