(Ⅰ) -----2分 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)求函数f(x)=-
2px
(p>0)在点P(2,-2
p
)
处的切方程;
(Ⅱ)过点F(1,0)的直线l交抛物线y2=4x于A、B两点,直线l1、l2分别切该抛物线于A、B,l1∩l2=M,求点M的横坐标.

查看答案和解析>>

(Ⅰ)如图1,A,B,C是平面内的三个点,且A与B不重合,P是平面内任意一点,若点C在直线AB上,试证明:存在实数λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如图2,设G为△ABC的重心,PQ过G点且与AB、AC(或其延长线)分别交于P,Q点,若
AP
=m
AB
AQ
=n
AC
,试探究:
1
m
+
1
n
的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

(Ⅰ)求以点F1(-2,0),F2(2,0)分别为左右焦点,且经过点P(3,-2
6
)
的椭圆的标准方程;
(Ⅱ)求与双曲线
y2
4
-
x2
12
=1
有相同渐近线,且经过点P(
6
,1)
的双曲线的标准方程.

查看答案和解析>>

(Ⅰ)求以点F1(-2,0),F2(2,0)分别为左右焦点,且经过点P(3,-2
6
)的椭圆的标准方程;
(Ⅱ)求中心在原点,焦点在坐标轴上,离心率为
2
,且经过点P(4,-
10
)的双曲线的方程.

查看答案和解析>>

(Ⅰ)阅读理解:
①对于任意正实数a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有当a=b时,等号成立.
②结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p

只有当a=b时,a+b有最小值2
p

(Ⅱ)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)
①若m>0,只有当m=
 
时,m+
1
m
有最小值
 

②若m>1,只有当m=
 
时,2m+
8
m-1
有最小值
 

(Ⅲ)探索应用:
学校要建一个面积为392m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图).问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值.
精英家教网

查看答案和解析>>


同步练习册答案