24.如图.△ABC中.∠BAC=90°.AB=AC.AD⊥BC.垂足是D.AE平分∠BAD.交BC于点E.在△ABC外有一点F.使FA⊥AE.FC⊥BC. (1)求证:BE=CF, (2)在AB上取一点M.使BM=2DE.连接MC.交AD于点N.连接ME. 求证:①ME⊥BC,②DE=DN. 24题图 查看更多

 

题目列表(包括答案和解析)

如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.

查看答案和解析>>

如图,△ABC中,∠BAC=90°,AB=AC,点D在直线BC上,△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接CE.
(1)当点D在线段BC上时(如图1),求证:DC+CE=
2
AC;
(2)当点D在线段CB延长线上时(如图2);当点D在线段BC延长线上时(如图3),探究线段DC、CE、AC之间的数量关系分别为,图2:
 
; 图3:
 

精英家教网

查看答案和解析>>

如图,△ABC中,∠BAC=90°,AB=AC,点D在直线BC上,△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接CE.
(1)当点D在线段BC上时(如图1),求证:DC+CE=数学公式AC;
(2)当点D在线段CB延长线上时(如图2);当点D在线段BC延长线上时(如图3),探究线段DC、CE、AC之间的数量关系分别为,图2:______; 图3:______;
作业宝

查看答案和解析>>

如图,△ABC中,∠BAC=90°,AB=AC,点D在直线BC上,△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接CE.
(1)当点D在线段BC上时(如图1),求证:DC+CE=AC;
(2)当点D在线段CB延长线上时(如图2);当点D在线段BC延长线上时(如图3),探究线段DC、CE、AC之间的数量关系分别为,图2:______

查看答案和解析>>

△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F.
(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;
(2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明);
(3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.
精英家教网

查看答案和解析>>


同步练习册答案